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Preface 

 
This book is for engineers, who want to solve a technical problem with the method of 

conformal mapping. The basic principles of conformal mapping are given in almost all 

textbooks of electromagnetic theory, field theory and static electric fields. The new 

approach in this book is the appendix with more than 500 BASIC-programs, with which 

all given mappings can immediately be calculated. 

 

The following procedure has to be met: 

 

1. Find out the number of your conformal mapping resp. the electrode-

configuration of your problem in Chapter 15, the table of all conformal 

mappings. 

2. Load the program with the mapping number (You need to have HTBasic-

software on your PC or server. There is a free demo version that you can 

download from www.htbasic.com) and modify the input parameters to match 

your specific geometry. 

3. Run the program and watch the output on the screen. 

4. Store the field-map on your computer. 

5. Add the computed field to a presentation or a document.  

 

There is actually no necessity to read the text or to learn the method of conformal 

mapping. 

 

Today, where automatic design software with two- and threedimensional field 

computations belongs to the standard tools of many R&D engineers, the method of 

conformal mapping has to a large extent lost its relevance. It is only used in the 

education of engineers and physicists, for the presentation of field-maps and to derive 

analytical formulas. 
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During my professional career I have used conformal mappings rather often (a major 

reason for that was probably because I know the method quite well). Therefore I started 

at the completion of my doctoral thesis to collect conformal transformations and to 

derive systematically new transformations. For a couple of years I made this my private 

hobby. As time passed by, this accumulated to a large number of transformations and 

consequently there was the idea to publish all this: the library of conformal mappings, 

the collection of BASIC-programs and the methods used, to derive all this. 

 

If you start to work extensively with the method of conformal mappings, you are 

inevitably confronted with elliptic integrals and elliptic functions. It is rather heavy for 

an engineer to become acquainted with this very specialized field, mainly because the 

correspondent literature does not use a consistent nomenclature. In order to remedy this 

drawback, I have introduced new notations in chapters 12 and 13, with which it is 

possible to differentiate between the various types of functions. The different notations 

of Jacobi's Zeta Function for instance, which are all denoted as Z(w,k) in the literature, 

are divided into the algebraic form Za (w,k), the trigonometric form Zt (w,k) and the 

elliptic form Ze (w,k). 

 

 

 

 

 
Munich, October 1993               Harald Dalichau 
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1. Conformal Mapping and Complex Variables 
 
1.1 Introduction 

 

Conformal mapping is a very powerful method for the analytical solution of two-

dimensional potential fields. Potential fields are solutions of Laplace’s equation, 

 

     ∆ u = 0,     (1) 

which in e.g. Cartesian coordinates x and y reads 

   
d u x y

d x

d u x y

d y

2

2

2

2
0

( , ) ( , )
+ = .    (2) 

The potential distribution u(x,y) satisfies the differential equation. If the given boundary 

conditions are unique the solution u(x,y) is unique as well. In case a function u1(x,y) 

satisfies the boundary conditions and is at the same time a solution of the differential 

equation, then this function u1(x,y) is the wanted solution of the accompanying physical 

problem  and no other solution exists, which is different from u(x,y). 

 

The two-dimensional potential fields that can be solved with the method of conformal 

mapping or conformal transformation respectively are for instance: 

 

 - static electric fields, 

 - static magnetic fields, 

 - stationary electric flow fields, 

 - fields of TEM-waves, 

 - stationary thermal flow fields, 

 - stationary hydrodynamic flow fields, 

 - stationary aerodynamic flow fields. 
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Further applications for the method of conformal mapping are amongst others the 

theory of elasticity (e.g. torsion of a cylindrical rod, deformation of a rubber membrane 

and plane stress) and in the projection of curved planes (e.g. Mercator projection in the 

field of cartography). In the following text only terms and examples from the field of 

static electric fields, from the field of transmission line theory and from the field of 

stationary electric flow will be used. 

 

 

1.2 Computation of an Electric Field without Conformal 
 Mapping 
 

Example 1:  Two concentric circular cylinders 

As an example for a two dimensional electrostatic field two very long, concentric 

circular cylinders are analyzed (Figure 1.1a). The outer cylinder has the potential 0 and 

the inner one has the potential u1. The planes of constant potential, u = const (Figure 

1.1c) are to be calculated. As the field map is identical in all cross-sections z = const, 

the distribution of the traces of the potential lines u = const have to be determined in the 

x-y-plane only (Figure 1.1b). Furthermore the traces of the field lines (Figure 1.1d), 

which are everywhere perpendicular to the potential lines: The tangent of a field line 

gives in every point (x,y) of the plane the direction of the local vector of the electric 

field strength E
r

(x,y). 
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Figure 1.1: Example 1, a) 2 concentric circular cylinders with electrostatic field, 

b) two-dimensional problem, c) equipotential lines (blue), d) electric field lines 

(red), e) complete field map 
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The calculation of the potential distribution u(x,y) (Figure 1.1e) between the two metal 

cylinders can for instance be accomplished in that way, that the real configuration is 

substituted by the field of a fictive line charge ρ L in the center of the metal cylinder 

(Figure 1.2). The potential u(x,y) in this equivalent configuration is known. 

 

   u r n
r

r
L( ) .=

ρ

πε2 0
l       (3) 

 

The reference radius r0 is the radius, at which the potential has the value u = 0 . In the 

case of the potential distribution of Figure 1.2 r0 can be arbitrarily chosen. 

 

According to Eq. (1.2) all potential lines in the equivalent configuration are concentric 

circles. With the theorem about the uniqueness of the solution of Laplace’s equation 

follows, that the field map between two concentric, metallic circular cylinders is 

enclosed in the field map of a line charge. In order to match both fields also 

quantitatively, the reference radius r0 and the value of ρ L are chosen in such a way, that 

the two boundary conditions 

 

   u (r r ) 0a= =        (4) 

 

   u (r ri ) u1= =        (5) 

are satisfied. 

 

With r ra0 =  and     1
L

i

a

2πε uρ = rn
r

l
  the potential distribution is 

   
a

a

i r
rn

r
rn

uru l
l

⋅= 1)(      (6) 

or 
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   u (r) u

n r
r

n r u

n r
r

n r1

i

a

a
1

i

a

= +
l

l
l

l     (7) 

or 

   u (x,y) u

n r
r

n r u

n r
r

n x y1

i

a

a
1

i

a

2 2= − + +
l

l
l

l    (8) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Potential lines (blue) and field lines (red) of a line charge ρL in the 

origin of the x-y-coordinate system 

 

Example 2:  Sector of an annulus 

As an example from the field of stationary electric flow a thin sheet of conducting 

material is analyzed. Figure 1.3 shows the sheet with thickness d and electric 

conductivity σ . The sheet has the shape of the sector of an annulus with the angle ϕ1. 

ρL

Field line,
v = const

Potential line,
     u = const

x

y

r
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x

y

r=rar=ri u=0

u=
u 1

ϕ1

d

σ

The two blue electrodes have the potential 0 and u0 respectively. Due to the 

conductivity of the material a current flows through the sheet. Because the sheet ends at 

the red boundaries, where the non-conducting outer region begins, the red circular arcs 

at i ar = r and r = r  are fixed boundary conditions and as that electric flow lines or flux 

lines respectively. In the region inside the blue-red boundaries the potential distribution  

u (x, y) has to be determined. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Stationary electric flow field in a conductive sheet with thickness d 

 

Because flux lines and potential lines are perpendicular to each other and because in the 

differential equation (1.3) the x- and the y-dependencies are equal, it can be assumed, 

that also the field map of this configuration is given by the field map of a line charge in 

the origin of the coordinate system according to Figure 1.2. Only the field lines (electric 
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flow lines) and the potential lines have changed places in this case. The electric flow 

lines are parts of concentric circles and the potential lines are parts of straight lines 

through the origin. 

   u u( )ϕ = 1
1

ϕ

ϕ
      (9) 

   u x y u
y
x

( , ) arctan( ).= 1
1

ϕ

ϕ
     (10) 

Every potential field like that in Figure 1.2 thus solves two problems. The second one, 

the dual problem, is found by exchanging potential lines and field lines: If the blue lines 

were interpreted as potential lines in the first problem, they are taken as field lines in the 

second problem. 

 

If a closed region like that in Figure 1.3 is examined, whose boundaries completely  

comply with a sector of an infinite or bigger field map, like e.g. that in Figure 1.2, 

which is defined for the complete x-y-plane, then there is also a complete agreement 

between the field map inside the closed region and that inside the sector. 

 

 

1.3 Analytic Functions 

 

A function w of a complex variable z x jy= +  

   w f z= ( )       (11) 

 

is termed analytic, if the derivative of the function 

   dw
dz

im w z z w z
zz

=
+ −

→
l
∆

∆
∆0

( ) ( )     (12) 
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exists and if it is independent of the direction ∆ ∆ ∆z x j y= + . To prove this, the function 

can be differentiated in Cartesian coordinates once in the x direction and once in the y 

direction. If the real part of w is u and the imaginary part is v, w = u + jv,  this leads to: 

In x direction:   
dw
dz

im
u x x y u x y j v x x y v x y

xx
=

+ − + + −

→
l
∆

∆ ∆

∆0

( , ) ( , ) ( , ) ( , )
 (13) 

 

In y direction:   
dw
dz

im
u x y y u x y j v x y y v x y

j yy
=

+ − + + −

→
l
∆

∆ ∆

∆0

( , ) ( , ) ( , ) ( , )
 (14) 

 

The function f z( ) is analytic, if the real parts and the imaginary parts of both equations 

are equal. 

 

Real parts: l lim u x x y u x y
x

im v x y y v x y
yx y∆ ∆

∆
∆

∆
∆→ →

+ −
=

+ −
0 0

( , ) ( , ) ( , ) ( , )   (15) 

Imaginary parts: l lim v (x x, y) (x, y)
x

im u (x, y y) u (x, y)
yx 0 y 0∆ ∆

∆
∆

∆
∆→ →

+ −
= −

+ −⎛
⎝
⎜

⎞
⎠
⎟

v  (16) 

 

Equation (15) and (16) written as differential equations read: 

     
∂

∂

∂

∂

u
x

v
y

=      (17) 

 

     v u
x y
∂ ∂

= −
∂ ∂

.     (18) 

 

These are the Cauchy-Riemann equations. 

 

In cylinder coordinates they read: 

   ∂
∂

∂
∂ϕ

∂
∂

∂
∂ϕ

u
r

1
r

v ; v
r

1
r

u .= = −     (19) 
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These differential equations are, as mentioned above, usually used, to prove, that a 

function w f z= ( )  

    w z u x y jv x y( ) ( , ) ( , )= +     (20) 

is analytic. These conditions are necessary and sufficient. 

 

If they are differentiated again and inserted, it is evident that the real part u and the 

imaginary part v satisfy Laplace’s equation. 

   ∆ u x y
u x y

x

u x y

y
( , )

( , ) ( , )
= + =
∂

∂

∂

∂

2

2

2

2
0    (21) 

 

   ∆ v x y
v x y

x

v x y

y
( , )

( , ) ( , )
.= + =

∂

∂

∂

∂

2

2

2

2
0    (22) 

A function is in a region analytic (different terms: regular, holomorph), if the 

derivatives (Eq. (17, 18)) exist and are unique in all points of this region. Single 

singular points, where the derivative is undetermined or infinite are allowed. An 

analytic function, whose singularities are only poles, is a meromorphic function. As for 

instance all elementary algebraic and transcendental functions satisfy this condition, 

there are very many analytic functions. Furthermore holds that analytic functions of 

analytic functions are also analytic. 

Analytic functions can be divided into three classes: 

   - nonperiodic, 

   - single-periodic and 

   - double-periodic 

 

analytic functions. Single-periodic functions are for instance the trigonometric functions 

and the exponential function. Double-periodic analytic functions are called elliptic 

functions. 
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Real part and imaginary part of an analytic function are harmonic functions. If for 

instance the real part is known, the imaginary part can be calculated in such a way, that 

both together form an analytic function. v x y( , )  is the conjugate harmonic function of 

u x y( , )  and −u x y( , ) is the conjugate harmonic function of v(x,y). 

 

This coincidence that when working on physical problems Laplace’s equation is to be 

solved in a region with the local coordinates x and y and that for analytic functions 

w f x jy= +( ) , the real part of w as well as the imaginary part of w satisfy Laplace’s 

equation, opens up the possibility, to solve these physical problems with the methods of 

the theory of complex variables: 

      - The local coordinates x and y (Figure 1.1 and 1.3) are renamed as real axis x and 

imaginary axis y of the complex z-plane. 

      - The solution that is to be found is no longer a potential function u x y( , )  or a 

field function v x y( , ) , but the complex function w u x y= ( , )+ jv x y( , )  with the 

real part u x y( , )  and the imaginary part v x y( , ) . 

 

The function w x y( , ) is called complex potential. The real part and the imaginary part 

can be either interpreted as potential function or as field function of the associated 

physical problem. In the case of example 1 and 2 respectively this means: 

     w( , )x y n z= l      (23) 

with 

  ( )[ ]l l ln z n x jy n x y j y x= + = + ⋅( ) exp arctan ( / )2 2   (24) 

    l ln z n x y j y x= + +2 2 arctan( / )   (25) 

this leads to 

    Re w n x y= +l 2 2     (26) 
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    Im w arctan (y / x) .=       (27) 

 

A comparison with Eq. (1.13) and (1.18) yields that Re w is the potential function in 

example 1 and Im w is the potential function in example 2. All constant factors and 

additive constants, which are missing in these cases, are irrelevant for the solution of the 

potential problem. The field between two concentric circular cylinders always looks like 

Figure 1.3, independent of the fact, which specific numerical values are chosen for the 

potential of the inner and the outer cylinder. 

 

The first, in some cases rather difficult step on the way to find a solution for a potential 

problem is to determine the potential function u(x,y). The second, trivial step is then the 

choice of the constants a and b, that belong to the specific physical problem. 

   specialu (x,y)=a + b u (x,y)      (28) 

 

 

1.4 Conformal Mapping 

 

The potential function u x y( , )  or the complex potential w x y( , ) can be used to calculate 

for a given problem in every point ( , )x y  the local potential u x y( , ) . However in many 

cases the field map of the configuration is needed, this means the traces of the potential 

lines u const=  and the traces of the field lines v const=  in the x-y-plane (Figure 1.2). 

This results from the inverse function z u v( , ). The function z u v( , ) yields for every 

value u = const the trace of the corresponding potential line. In the case of example 1 

and 2 respectively: 

 

 Complex potential:   )(exp wzznw =⇒= l   (29) 

 Field map:    z u jv= +exp ( )    (30) 
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 Potential line u u v= 0 ,  variable: z u jv0 0= ⋅exp( ) exp( ) .  (31) 

 

The potential line, that we are looking for, thus is a circle around the origin of the z-

plane with the radius exp( )u 0  . 

 Field line  v v u= 0 ,  variable: z u jv0 0= ⋅exp( ) exp( ) .  (32) 

 

The field line or flux line, that we are looking for, thus is a straight line through the 

origin of the z-plane with the angle v 0 measured from the positive x-axis (Figure 1.2, 

1.3). 

 

The equation z f w= ( ), which can be used to draw the field map, may be depicted as a 

mapping or a transformation: In the w-plane the lines u const=  (red) and v const=  

(blue) are because of w u jv= +  straight lines that build a Cartesian coordinate system 

or a uniform field respectively (Figure 1.4). The straight lines u const=  are mapped 

onto concentric circular arcs in the z-plane and the parallel straight lines v const=  are 

mapped onto radial rays through the origin of the z-plane. The inside of the rectangle 

ABCD is mapped onto the inside of a sector of an annulus ABCD. Just as well as it is 

possible to calculate with the equation for each value of w1 the corresponding value of 

z1, the graphic representation of the z-plane and the w-plane gives for every point in 

the w-plane the corresponding point in the z-plane. 

 

The graphic representation according to Figure 1.4 that maps the w-plane onto the z-

plane with an analytic function z f w= ( ) is termed conformal mapping. To every 

analytic function z f w= ( ) belongs a conformal mapping. 
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Figure 1.4: The transformation z = exp (w), mapping B 1 
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Properties of the conformal mapping: 

      - Orthogonal sets of curves are transformed into orthogonal sets of curves. 

      - Every point in the z-plane corresponds exactly to one point in the w-plane, 

nevertheless are periodically recurring allocations, like for instance with the 

function z w= sin , allowed. 

      - When considering infinitesimally small regions, every structure in the w-plane is 

transformed into a similar structure in the z-plane. This means, an 

infinitesimally small circle remains a circle and an infinitesimally small triangle 

remains a triangle.  

 Through the mapping process they are only rotated and reduced or magnified, 

respectively. For every point of the z-plane a complex number can be 

determined. The magnitude of this number is the scale factor, with which all 

lengths in the corresponding point of the w-plane have to be multiplied and the 

phase angle of this number determines, by which angle all lines have to be 

rotated. 

 As rotation and magnification vary continuously from each point of the z-plane 

to its neighboring point, the similarity is not achieved for larger areas. 

      - The conformal mapping is isogonic (it conserves the angles). 

      - As a result of this a given sense of circulation around any arbitrarily defined 

closed region is conserved. (In Figure 1.4 the vertices of the rectangle ABCD 

are lettered clockwise in both planes.) 

      - The conformal mapping is a similarity transformation (therefore the adjective 

"conformal"). 

 

As analytic functions are allowed to have certain isolated singularities, where they 

cannot be differentiated, all properties listed above are not satisfied at the location of the 

singularity. 
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1.5 Theory of Images 

 

Image behind a plane: 

 

In the field map of two line charges of same size and opposite polarity (Mapping E 1, 

Figure 1.5a) and in the field map of a symmetrical two wire line in odd mode 

respectively, the potential line at y = 0 is a straight line of infinite length. This line is a 

symmetry axis of the field (Figure 1.5b). In the three-dimensional field of the two line 

charges the plane y = 0 is the symmetry plane. The boundary conditions of the field on 

this plane are: 

 

  1. The blue line y = 0 is a magnetic field line. 

  2. The potential U of this symmetry plane is constant. 

  3. The electric field lines are perpendicular to this plane. 

Or 

  4. U(y) is an odd function. 

  5. E(y) is an even function. 

 

Every potential line in an electrostatic field may be replaced by a conducting surface, 

without any change in the field above the conducting plane. Therefore it is possible in 

Figure 5.1a, b to replace the symmetry plane by a conducting half space with infinite 

extension (Figure 1.5c). The field above the half space is identical to the field in the 

upper half plane of Figure 1.5a. 

 

From the statements above follows, that the field of a line charge above a conducting 

half plane can be calculated, by removing the conducting half plane and replacing it 

with a line charge, which is of same size and has opposite polarity and which is placed 

at the same distance h below the plane y = 0. 
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Figure 1.5: Field map of a symmetric two wire line in odd mode with a 

symmetry plane at y = 0 
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This method of images is also useful and valid respectively for other types of reflecting 

surfaces (Figure 1.6). It is not only possible to image line charges but also dipoles or in 

general arbitrary charge distributions and electrode shapes (Figure 1.6d). The theory of 

images is not restricted to electrostatics but it is valid in analog manner also for electro-

magnetic wave fields, consequently also for that range of frequencies that covers the 

visible light. Thus it is possible to visualize the phenomena described above with 

optical mirrors instead of conducting planes and optical images instead of line charges.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6: Imaging at different planes; various charge configurations 
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The theory of images has lead to an additional analytical method to calculate specific 

static fields: As the fields of line charges, point charges and dipoles are analytically 

known and as they can be superposed arbitrarily (Chapter 3), it is possible to determine 

the field of Figure 1.6b, by imaging the line charge in the first step once at the upper 

plane and once at the lower plane. In the second step these image charges of first degree 

are imaged once again at both planes, thus producing the image charges of second 

degree, etc. The superposition of the fields of all these charges leads to a fast 

converging series, with which the total field of the configuration can be calculated with 

good approximation. 

 

When looking at Figure 1.5a it is evident, that there is still another symmetry plane 

existing: The y-axis of the coordinate system is a straight field line (red line) with 

infinite extension, except for the two poles at the location of the line charges. The 

potential lines (blue lines) are perpendicular to this line and the field in the 1. quadrant 

is the mirror image of the field in the 2. quadrant. 

 

Figure 1.7 visualizes once again this type of symmetry at the example of the field of two 

line charges with same size and same polarity (Mapping S 1). This is the field of a 

symmetric two wire line in even mode. The plane y = 0 is the symmetry plane of the 

field. In analogy to the electrically conducting wall in Figure 1.5, where the electric 

field lines are perpendicular to, this plane is termed magnetically conducting wall. In 

this case the magnetic field lines (blue lines) are perpendicular to the wall. The 

boundary conditions of the field on this plane are: 

 

  1. The red line y = 0 is an electric field line. 

  2. The magnetic field lines run perpendicular to this plane. 

Or 

  3. U(y) is an even function. 

  4. H(y) is an even function. 



1.   Conformal Mapping and Complex Variables 
_____________________________________________________________________________________  

Vs. 1.1 

19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7: Imaging at a magnetically conducting wall illustrated by the field of 

two line charges with same size and same polarity     (Mappimg S 1) 
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Images inside/outside a circle (cylinder): 

 

Field maps, calculated with the method of conformal mapping, consist of sets of 

orthogonal curves. Therefore it is possible to interpret every field line and every 

potential line as curvilinear mirror. The correspondence between a point in front of the 

mirror and its image behind the mirror is defined by the individual mapping function. 

This interpretation however does not yield new insights. Only for a few special types of 

mirrors, like for instance straight lines, circles and ellipses, it is possible to put up 

imaging laws of universal validity. 

 

For the unit circle there is the law of the reciprocal radii (Figure 1.8a): A positive line 

charge with the distance r1 from the origin of the coordinate system generates, with the 

unit circle being a potential line (mirror), as an image a line charge with the same size 

but opposite polarity in a distance r2 = 1/r1. 

 

From this follows for instance, that in the field map of a coplanar wave guide (Mapping 

E 3, Figure 1.8b), which contains a circular potential line (pale green), the end point of 

the inner conductor at x1 = sqr(k) is mapped onto the end point of the outer conductor at 

x2 = 1/sqr(k). All points in between are mapped as well, following the same 

relationship. The midpoint of the inner conductor at x = 0 is finally mapped onto x = ∞. 

 

With the same mapping function the field maps of a circular inner conductor between 

two planar outer conductors (Figure 1.5c) and that of a conducting strip inside a circular 

outer conductor (Figure 1.5d) can be determined. Further examples for images 

inside/outside a circle are found in the table of mappings (E 5, G 7.3, L 1.2 etc.). 
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Figure 1.8: Images inside and outside of a circle 
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Images of an electrode with constant field strength: 

 

Electrodes with constant field strength have also the property, that the image of a 

straight line is again a straight line. Figure 1.9a shows the field map of a channel of 

width b that is bent by 90°. Along the pale green colored potential line in the middle the 

electric field strength is constant. In the transformation from the uniform channel in the 

w-plane to the bent channel in the z-plane this line is the "neutral fiber". Its length l  is 

not changed. In the imaging process at this electrode, the lower boundary with the right 

inside angle at A is transformed into the upper boundary with a right outside angle at B. 

The electric field strength is "inverse symmetric" with regard to the mirror electrode at 

v = b/2: 

 

  1( , / 2 )
( , / 2 )

E u v b v
E u v b v

= + ∆ =
= − ∆

    (33) 

 

The normalized electric field strength in the w-plane E(v) equals 1 on the mirror 

electrode. Below it is smaller and above it is bigger. In the extreme cases it is 0 in point 

A and ∞ in point B. 

 

Chapter 10 covers transformations containing electrodes with constant field strength. 

They compose the group of mappings N. 
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Figure 1.9: Imaging at an electrode with constant field strength (green line) 

         (Mappings D 4 and N 1) 
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2. Simple Conformal Mappings 

 
This chapter examines simple conformal mappings with elementary functions. A 

Cartesian coordinate system in the w-plane is mapped onto the z-plane in each case. 

There is a uniform field in the w-plane with blue horizontal potential lines (v = const) 

and red vertical field lines (u = const). After the transformation of the individual points 

with the mapping function the wanted non-uniform field (the field map) in the z-plane 

results, also with blue potential lines and red field lines. 

w-plane: Cartesian coordinates w = u + jv 

 uniform field 

z-plane: image plane 

 non-uniform field 

 field map 

To find out, onto which point z1 the point w1 is mapped, w1 is inserted into the mapping 

function z = f (w) and the result is 

z1 = f (w1). (1) 

Normally it is sufficient to look at the mapping of the boundaries, in order to study the 

properties of the individual conformal mapping. 
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2.1 The Mapping  z w= ϕ π/
 

 
In the process of the mapping the real axis is bent in the origin (Figure 2.1). All points 

w = u on the positive real axis are transformed into points z u= ϕ π/ , which are also on 

the positive real axis. The negative real axis w u j= ⋅exp( )π  is transformed into 

z u j= ⋅exp( )ϕ , a straight line through the origin with the angle ϕ . Point B stays in the 

origin of each coordinate system. Point w = 1 is transformed unchanged into point z = 

1; all points on the circle w = 1 are transformed into points on the circle z = 1. 

 

In the special case ϕ π= 2  the function z = w 2 maps the upper w-half plane onto the 

complete z-plane (Figure A1.2). The point z = 0 is the singular point of this mapping 

function. 

 

To understand the process of conformal mapping the following can be envisaged: 

 

a) The field map in the z-plane is produced by looking at the uniform field in the 

w-plane through a curved or deformed mirror. 

 

b) The field map in the z-plane is produced by looking at the uniform field in the 

w-plane through an optical lens with an appropriate continuously deformed 

surface. 

 

c) Field lines and potential lines have the flexibility of thin steel wires and at the 

same time the elasticity of rubber straps. They form an easily deformable planar 

lattice, where field lines and potential lines are always perpendicular to each 

other. In the case of the mapping in Figure 2.1, there is a hinge in point B of the 

w-plane (at the position of the singularity). When the left boundary electrode 

AB is turned around this rotational axis, the lattice of formerly parallel lines is 

deformed and the field map in the z-plane is produced.
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Figure 2.1: The transformation equation z = wφ/π with φ = 60° 
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2.2 The Mapping  z exp(w= π)  

 
This mapping was already mentioned in Chapter 1 (Figure 1.4). A Cartesian coordinate 

system is transformed into a polar coordinate system by the exponential function. 

Figure 2.2 shows that a parallel strip in the w-plane is mapped onto the 1. quadrant of 

the z-plane. The points on the straight line ADC 

 

  w u j= + / 2 (2) 

are because of 

  z u j u j= + = ⋅exp( / ) exp( ) exp( / )π π π π2 2  (3) 

  z=j exp(uπ)  

 

mapped onto ADC on the positive imaginary axis. The straight line is bent upward by 

90° and the point −∞  is transformed into the origin. All vertical lines turn into circular 

arcs. The straight line BD is transformed into a quarter circle with the radius 1. As there 

are infinitely many blue lines up to the point A, a line charge is generated in the origin 

of the z-plane. 

 

The complete z-plane results as the image of the parallel strip between 

v =-1 und v = +1. The other strips in parallel to this one produce periodically the 

same mapping. 
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Figure 2.2: The transformation equation z = exp(wπ), Mapping B 1 
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2.3 The Mapping  z n w= l  

 

The logarithm is the inverse of the exponential function. The wanted mapping therefore 

results out of Figure 2.2, when a Cartesian lattice in the z-plane is transformed onto the 

parallel strip in the w-plane. 

 

Figure 2.3 shows that the I. quadrant of the w-plane is mapped onto the parallel strip 

between v = 0 and v = π/2. 

 

  Point B: z nB = =l 1 0 (4) 

  Point D: z n j n j jD = = =l l( ) exp ( / ) /π π2 2  (5) 

 

The complete w-plane is mapped onto a parallel strip from v = -π to +π. The mapping is 

termed single-periodic, this means the periodicity is only in one dimension, in the y 

direction. 
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Figure 2.3: The transformation equation z = ln w, Mapping H 1 
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2.4 The Mapping  z arcsin w=  

 

As Figure 2.4 shows, the mapping with the arcsine bents the real axis in the points -1 

and +1 by 90°. The upper w-half plane is mapped onto the half strip from 

u = - / 2 bis u = + / 2π π  and the complete w-plane is mapped onto the complete parallel 

strip respectively. As with the logarithm the mapping with the arcsine is single- 

periodic. The similarity of the mapping of the boundaries in both cases yields from 

 

  arcsin ( ).w j n jw w= − + −l 1 2  (6) 

 

According to Chapter 5 this is the transformation with the logarithm together with a pre-

transformation with the equation in brackets. 

The points on the real axis between A and C are: 

   x u= arcsin . (7) 

The points between C and D result with Eq. 6 to 

   z j= +
π
2

 arcosh u. (8) 

All points on the imaginary axis of the w-plane are mapped onto the imaginary axis 

likewise in the image plane. 

   y = arsinh v. (9) 

An ellipse with the half axes 1 1cosh sinha y and b y= =  is mapped onto the straight 

line z y= ± 1. 
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The functions z = arccos w, z = arcosh w and z = arsinh w produce topologically similar 

mappings (Figure 2.5). Here again the half plane is folded up into a half strip. All three 

functions can in analogy to Eq. (6) be expressed by the logarithm and by the arcsine 

respectively. 

  

  arccos arcsinw w= −
π
2

 (10) 

  arsinh w j jw= − arcsin ( ) (11) 

  arcosh w j w j= − +arcsin /π 2 (12) 
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Figure 2.4: The transformation equation z = arcsin w, Mapping H 1.5 
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Figure 2.5: The transformation equations z = arccos w, z = arcosh w 
                    and z = arsinh w 
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2.5 The Mapping  z sin w=  

 

The properties of the mapping with the function sin w are following directly from 

Figure 2.4, because the arcsine is the inverse function. Thus Figure 2.4 and Figure 2.6 

are equal, except for the interchange of w and z. As the sine is a periodic function, the 

half strip from u = - / 2 through u = + / 2π π  is mapped onto the complete z-plane. 

Every horizontal straight line at v v= 1 is transformed into a half ellipse with the half 

axes a v= cosh 1 and b v= sinh 1. The ellipses are confocal with the foci at x = -1 and x 

= +1. All vertical lines in the w-plane are mapped onto confocal hyperbolas. The foci 

are also at x = ±1 and the cusps are at x u= ± sin 1. 

 

The functions z = cos w, z = sinh w and z = cosh w  yield topologically similar 

mappings. They can be represented by the sine function: 

  cos sin ( / )w w= + π 2   (13) 

  sinh sin ( )w j jw= −   (14) 

  cosh sin ( / )w jw= + π 2 . (15) 

The mappings are found in Figure 2.5, by interchanging the labels w-plane and z-plane.  
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Figure 2.6: The transformation equation z = sin w. 
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2.6 The Mapping  z tanh w=  

 

The parallel strip between v = - / 2 and v = + / 2π π  is mapped onto the z-plane. Point 

u = +∞  is transformed onto x = +1 and u = −∞  onto x = −1. The generation of the 

uniform field in the parallel strip can be envisaged as the field between a positive line 

charge +ρL at u = +∞  and a negative line charge -ρL at u = −∞  (line dipole or doublet 

at w = ∞ ). By the mapping with the function tanh w both line charges move closer 

together and end up in the points x = +1 and x = −1. Thus the field map in the z-plane is 

the field of two line charges with equal size and opposite polarity. 

 

The blue potential lines u u const= =1  are in the image plane circles with the radius  

   r x xI H1 2= −( ) /  (16) 

and the center point at 

   M Hx = r + x (Figure 2.7) . (17) 

They are termed Apollonian circles.  

Inserting in the transformation equation yields: 

 

  Point I:   x w u j uI I= = + =tanh tanh ( / ) / tanh1 12 1π  (18) 

  Point H: x w uH H= =tanh tanh .1  (19) 

 

This gives 

  r u u u1 1 1 11 2 1 2= − =( / tanh tanh ) / / sinh ( )  (20) 

  r u u uM = + =( / tanh tanh ) / / tanh ( ).1 2 1 21 1 1  (21) 
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The red field lines v = v1 =const are mapped onto circles as well. Their radii  

 

   r y yF G1 2= −( ) /  (22) 

and their center points  

 

   y y rM F= − 1 (23) 

are equated analogously by inserting the coordinates of the points F and G into the 

transformation equation: 

  Point F:  j y j v j vF = =tanh ( ) tan1 1 (24) 

  Point G: j y j v j j vG = − = −tanh ( / ) / tan1 12π  (25) 

this gives: 

  r v v v1 1 1 11 2 1 2= + =(tan / tan ) / / sin ( )  (26) 

  y v v vM = − = −(tan / tan ) / / tan ( ).1 1 11 2 1 2  (27) 

 

The straight lines v1 4= ±π /  are transformed into the unit circle. The field map has 

also the name "bipolar coordinate system". 

 

The functions z = tan w, z = cot w and z = coth w yield topologically similar mappings 

(Figure 2.8). They can be represented by the hyperbolic tangent: 

 

  tan w  =  -j tanh (jw) 

  cot w  =  1/tan w 
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  coth w  =  1/tanh w  

 

The field map is not changed by the inversion in the equations for cot and coth: The line 

charges remain at + 1 and + j respectively; the points 0 and ∞ change places. 

 

A representation of the w-plane and the z-plane like in Figure 2.7 is sufficient, to 

describe the function tanh w completely. The z-plane gives for every point magnitude 

and phase of the function tanh w. Tanh w has a zero at w = 0 (point A). At w = ±π / 2  

the function tanh w is infinite. The function has a pole at these points (points E, B). This 

way to represent a function of a complex variable is more descriptive and clearer than 

the relief representation, where in a three dimensional picture the magnitude of the 

function is represented by the height above the w-plane. In most cases the phase of the 

function is included in this relief as an additional lattice.
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Figure 2.7: The transformation equation z = tanh w, Mapping E 1 
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Figure 2.8: The transformation equations z = tan w, z = cot w and 
                     z = coth w
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2.7 The Mapping  z 1 / w=  

 

Whereas with the transformation function tanh w the two line charges at +∞  and at 

−∞ , which generate the uniform field w, are mapped onto the points +1 and −1, these 

line charges are mapped into the origin by the inversion 1/w. The field of a positive and 

a negative line charge of equal magnitude located in the same point is termed “line 

dipole field” and in the following text abbreviated “dipole field”. As this book covers 

only two dimensional fields, there is no danger of confusion with the field of a point 

dipole (whose field map is different from that of a line dipole). 

 

Figure 2.9d shows the sign for the dipole field that will be used in the following text, 

two small circles, arranged as an eight, in this case in the origin of the z-plane. The 

dipole field, labeled by this sign, is generated by the field of two line charges, same size 

but opposite polarity, which are symmetrically placed on the imaginary axis, when their 

distance d is infinitesimally small (Figure 2.9c). 

 

In the technical application the dipole field is for instance the far field of two line 

charges like in Figure 2.9c or the far field of a two wire line respectively, that means an 

approximation of the function z j w= tanh  in those regions of the z-plane, where 

z d>>  is valid, this is far away from the two line charges. 

 

The field map (Figure 2.9b) consists of two sets of mutually orthogonal circles, which 

all go through the origin of the z-plane. The point w = 1 is mapped onto the point z = 1. 

A red straight line u const1 =  is mapped onto a red circle that crosses the real axis at 
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1 1/ u . Its center point is also on the real axis at 1 2 1/ ( )u . In the same manner all blue 

straight lines v const1 =  are mapped onto blue circles. Because of 

 

  z w
w j w

j= =
⋅

= −1 1 1/
exp ( )

exp ( )
ϕ

ϕ  (28) 

 

the I. quadrant of the w-plane is mapped onto the IV. quadrant of the z-plane and vice 

versa. The unit circle in the w-plane is mapped onto the unit circle in the z-plane. Only 

the sense of circulation is reversed. The field map in the z-plane is equivalent to the 

backside of the complex Riemann sphere, that means it is the top view on the point ∞ . 

 

The bilinear transformation (Möbius transformation) and the transformation with a 

fractional linear function respectively 

 

  aw bz
cw d

+
=

+
  with ad - bc ≠ 0 (29) 

 

with arbitrary complex constants a, b, c and d, which often also has the simpler form 

 

  1
1

wz
w
+

=
−

   (30) 

or 

  w jz
w j
+

=
−

,   (31) 

yields topologically the same field map as the inversion z = 1/w. The constants only 

cause a magnification, a rotation and a displacement of the coordinate system 

(translation). Examples: Mapping of regions No.: 7, 8, 24, 25, 26, 31, 32 in 6.8 and 

Example 6.8.
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  c) Dipole field with line charges d) Sign for the dipole field in c) 
           with d  →  0 
 
 
Figure 2.9: The transformation equation z = 1/w, Mapping Q 1 
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3.   Superposition of Complex Potentials 
 
The w-plane is the plane of the complex potential w. The real potential distribution 

(voltage distribution) of a given technical problem, whose geometry exists in the z-

plane, is found as real part u(z) or as imaginary part v(z). The superposition principle 

for real potential fields is likewise valid for complex potential fields: The total potential 

w is the sum of the single potentials of all sources, which are present in the z-plane. 

Simple sources, which are qualified for superposition, are: 

 

Table 3.1: Complex notation of elementary potential sources 

 

Source Potential 

 

Uniform field   

 

Uniform field, rotated by the angle ϕo   

(Oblique flow) 

 

Line charge at zo  

 

Line dipole at zo  
 
 

Line dipole at zo , rotated by the angle ϕo 

 

w a zo=                            (1) 

 

( )w a z jo o= ⋅ ⋅ −exp ϕ      (2) 

 

 

( )w a n z zo o= ⋅ −l          (3)

 

w a
z z

o

o

=
−

                      (4) 

 

( )w a
z z

jo

o
o=

−
⋅ exp ϕ      (5) 
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Provided there are n sources with the amplitude ai at the points zi given in the z-plane, 

then the total potential w of the configuration is the sum of the potentials wi of all 

sources. 

w =
=
∑w zi
i

n
( )

1
 (6) 

The superposition of potential fields wi is permitted if and only if all fields wi satisfy the 

same boundary conditions throughout the whole z-plane (singular points excluded). 

Because line charges and line dipoles originate from singular points, it is possible to 

superpose their fields. On the contrary to these, potential fields, which are created by 

spacious electrodes, being located at different points zi, cannot be superposed. Example: 

The potential field of a conducting strip at point z1 and the potential field of a cylinder 

at point z2 are not superposable, because the field of the conducting strip does not have 

an equipotential plane at the location of the cylinder surface and because the field of the 

cylinder does not have an equipotential plane at the location of the conducting strip as 

well. Hence only the elementary sources of Eq. (1) through (5) are feasible for the 

method of superposition of complex potentials. 

 

With Eq. (6) it is possible to calculate the potential of all configurations that consist of a 

uniform field and of line charges and/or line dipoles. The associated field map z = f(w) 

is found by inverting the potential function w = f(z) {Eq. (6)}. In those cases, where it is 

not possible to write down this equation for he field map explicitly, numerical line 

tracing methods can be used, to plot the field. 

 

The procedure of employing the method of superposition of complex potentials will be 

demonstrated with some simple examples: 
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x

d

y
z z

+ρL+ρL

d

h

x

d

y

++

d

h

_ _

12

3 4

Example 1:  Two equal line charges above a conducting plane. 

 

Figure 3.1a shows the geometry of the configuration. According to the theory of images 

the conducting plane is replaced by the mirror images of the two line charges in the 

upper half plane (Figure 3.1b). In every point (x, y) of the z-plane the complex potential 

w is given as the sum of the potentials of the 4 line charges: 

 
( ) ( ) ( ) ( )w a n z z a n z z a n z z a n z z= ⋅ − + ⋅ − + ⋅ − + ⋅ −1 1 2 2 3 3 4 4

l l l l  (7) 

 

 

 

 

 

 

 

 

a) Initial problem: 2 equal line     b) Replacement of the conducting     

charges above a conducting plane   plane by two image charges 

Figure 3.1: Example 1 

 

As all four line charges have the same size, the magnitudes of a1 through a4 are equal. 

They are chosen to be 1. The line charges 1 and 2 are positive, therefore a1 = 

a2 = 1. The remaining two are negative, therefore a3 = a4 = -1. The points z1 through z4 

are found directly from Figure 1b.  
 

( )[ ] ( )[ ] ( )[ ] ( )[ ]w n z d jh n z d jh n z d jh n z d jh= − + + − − + − − − − − − −l l l l  (8) 

 
( )[ ] ( )[ ]
( )[ ] ( )[ ]w n

z d jh z d jh
z d jh z d jh

=
− + − − +
+ + + − +

l  (9) 

With Eq. (9) it is possible to determine the potential in every point of the z-plane.
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x

y
z

-1+σ

1

The field map of the configuration is found by inversion (Mapping L 2): 

 

( )
( )

( )
( )

z jh
w
w

d h
w
w

= −
+
−

± + −
+
−

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
1

1
1
1

2 2

2
exp
exp

exp
exp

 (10) 

 

Example 2: Two line charges, opposite sign, different size. 

For a negative line charge at x = +1 and another one in the origin with opposite sign, 

whose magnitude differs by the factor σ(Figure 3.2), the complex potential is:  
 

w n z n z= − −σ l l ( )1  (11) 
 

w n
z
z

=
−

l
σ

1
 (12) 

 

In the case σ  = 2 the equation can be solved for z. The field map of this configuration is 

then (Mapping L 3): 

 

( ) ( ) ( )z
w w

w= ±
⎛
⎝
⎜

⎞
⎠
⎟ −

exp exp
exp

2 2

2

 (13) 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Example 2 
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x

y
z

+1

aa

+1

Example 3: Two equal line dipoles. 

 

Two dipoles with the same orientation are located at x = +a and x = -a (Figure 3.3). The 

potential w is found by superposition: 

 

w
z a z a

=
+

+
−

1 1
 (14) 

 

w
z

z a
=

−

2
2 2

 (15) 

 

The corresponding field map is then (Mapping Q 2.1): 

 

z
w w

a= ± +
1 1

2
2  (16) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Example 3 
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+-
+1+ = x

y

+-
+1

r=1

→

E

w z = w z= 1/

z

Example 4:  Conducting cylinder in a uniform field. 

 

The field map of a conducting cylinder in a uniform electrostatic field is derived by 

superposition of a dipole field and a uniform field (Figure 3.4). 

The corresponding complex potential is: 
 

w z z= + 1 /  (17) 
 

Solving for z results in the field map: 
 

z w w
= + ⎛

⎝⎜
⎞
⎠⎟

−
2 2

1
2

. (18) 

 

As the coordinate system in the w-plane may be scaled arbitrarily, the mapping remains 

unchanged, if w/2 is replaced by w. Hence the solution is (Mapping A 3) 

z w w= + −2 1 . (19) 

 

In the resulting field map the unit circle is an equipotential line. Outside, in great 

distance, the uniform field is found; inside, in the center, there is the dipole field. 

 

 

 

 

 

 

 

 

 

Figure 3.4: Example 4 
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z

a)

b)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Exterior field a) and interior field b) of the conducting cylinder from 

                    Example 4 
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4. Mapping of Polygonal Boundaries 
 
 

The field map in the interior of a closed polygon is to be determined (Figure 4.1b). It is 

permitted that one or several vertices of the polygon are at infinity (Figure 4.1c, d). In 

the context of conformal mapping this is expressed as follows: The analytical function 

z f w= ( ) is sought, which maps the uniform field in the upper w-plane onto the interior 

of the polygon. In this mapping the real axis of the w-plane corresponds with the boun-

dary of the polygon. 

 

For open polygons like e.g. in Figure 4.1c the ambiguity exists, whether the calculated 

field map is above or below the polygonal line. The answer follows from the theorem 

that conformal mapping preserves the sense of circulation (Chapter1): Going from A to 

B, the uniform field is to the left of the straight line AB. Consequentially the calculated 

field map in the image plane is also left of the straight line AB, when going from A to B 

in that plane. 

 

According to the chosen coordinate system, the potential lines are the lines v const= .  

The potential distribution in the z-plane is v x y( , ) . Then the electric field strength in the 

z-plane is 

r r r
Ε = − = − −grad v x y

v
x

e
v
y

ex y( , )
∂

∂

∂

∂
 . (1) 

The magnitude of the field strength is: 

 

E v
x

v
y

d w
d z

=
⎛
⎝
⎜

⎞
⎠
⎟ +

⎛
⎝
⎜

⎞
⎠
⎟ =

∂
∂

∂
∂

2 2

 . (2) 
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A
B C D E

A

B

C

D

E

uD

A

B

C
D

E

A

B

C

D

E

a) b) 

c) 

w

z

z

z

A

v

u

y

x

x

y

A

ϕB

ϕC

ϕD

ϕE

x

y

αD

αB

αE

αC

αA

d)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1: Mapping the upper half plane onto the interior of a polygon 
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As the electric field strength E on a conducting surface is infinite at an exterior angle 

( )ϕ π>  and vanishes in an interior angle ( )ϕ π< , for the contour in Figure 4.1c follows: 

Point C: ϕ > π ∞⇒ =E C  

Point D: D> E =ϕ π ⇒ ∞  

 

Point B: ϕ π< ⇒ =E B 0 

Point E: ϕ π< ⇒ =E E 0  . 

 

Hence the function d w d z/  can be written in the form 

 
( ) ( )
( ) ( )

d w
d z

f
w u w u
w u w u

B E

C D

=
− −
− −

⎛

⎝
⎜

⎞

⎠
⎟1  (3) 

 

with zeros at w u B=  and w u E= and poles at w u C=  and w u D= . The inverse of this 

function is: 

 
( ) ( )
( ) ( )

d z
d w

f
w u w u
w u w u

C D

B E

=
− −
− −

⎛

⎝
⎜

⎞

⎠
⎟2 . (4) 

 

It was shown in Chapter 2 that the function z w= ϕ π/  creates a corner of the boundary 

(a vertex) at the origin with the interior angle ϕ. As field maps may be rotated and dis-

placed arbitrarily, this is valid in general for a corner in the boundary at an arbitrary 

point B (Figure 4.2). From 

 

( )z w uB

B

= −
ϕ π/

 (5) 

follows 

( )d z
d w

w uB
B

B

= −
−ϕ

π

ϕ π/ 1

 . (6) 
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Figure 4.2: The transformation  z = (w-uB)φB
/π 

 

The function d z d w/  that is sought-after, is therefore evidently for the example in Fig-

ure 4.1c 

( ) ( )
( ) ( )

d z
d w

A
w u w u
w u w u

C D

B E

C D

C E
=

− −

− −

− −

− −

ϕ π ϕ π

ϕ π ϕ π

/ /

/ /

1 1

1 1  (7) 

 

All points, where the field strength reaches infinity (ϕ > π, outside corner), are in the 

numerator and all points, where the field strength vanishes (ϕ < π, inside corner: 

ϕ π/ − <1 0) are in the denominator. Integration of Eq. (7) yields the transformation 

equation z f w= ( ). 

 

The above illustrated relations can also be derived and proven with more mathematical 

stringency (e.g. [6, 15]). 

 

For the mapping of the upper w-half plane onto the interior of a region with polygonal 

boundaries and with n vertices in the z-plane is valid: 

( )d z
d w

w ui
i

n
i= − −

=
∏ ϕ π 1

1

.  (8) 

 

A
B

C

A

B
C

uB

a) b) 

w z

v

u x

y

ϕB
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The corresponding transformation equation is: 

 

( )z B w u dw Ci
i

nw
i= − +−

=
∏∫

ϕ π 1

10

.  (9) 

As the constants B and C do not influence the field map, they may be chosen arbitrarily 

for practical problems. Hence the equation is: 

 

( )z w u d wi
i

nw
i= − −

=
∏∫

ϕ π 1

10

.  (10) 

Because this book is intended for engineers and not for mathematicians, for the sake of 

clarity the same letter w is used for the variable and the upper integration limit. 

 

If a point lies at infinity ( )u i = ∞ , like e.g. point A in Figure 4.1a, the corresponding 

term is omitted. The angles ϕ i  are the interior angles of the polygon. They are in the in-

terior of the field maps. Points with u i ≠ ∞ , which are at ∞ in the image plane (e.g. 

point D in Figure 4.1d), must of course be included. For two parallel straight lines, like 

in point D, Figure 4.1d, φD equals 0. 

 

Because the sum of the interior angles of a closed polygon is π (n-2), the equation can 

be checked with: 

 

ϕ πi
i

n
n= −

=
∑ ( )2

1
 (11) 

Instead of using the interior angles ϕ i , it is easier, to work with the rotation angles α i. 

 
ϕ π α πi i− = −1  (12) 

As the complete change of direction is 360° when circumscribing a closed region, for 

the sum of the rotation angles α i  holds: 

 

α πi
i

n
=

=
∑ 2

1
 . (13) 
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If the boundary line in the z-plane is run through in such a sense of circulation that the 

field map is to the left, then α i  is the angle of the change of direction in point i (Figure 

4.1d). Angles like α E , which rotate in a mathematically negative sense, are inserted in-

to Eq. (14) with negative sign. Hence all outside corners with E i = ∞ are in the nu-

merator of the integral. Equation 8 thus gets the form  

 

( )
d z
d w w uii

n

i
=

−=
∏ 1

1
α π .  (14) 

and Eq.10 is 

 

( )
z d w

w ui
i

n

w

i

=
−

=
∏

∫
α π

1

0

 . (15) 

 

Due to the two mathematicians, who first published Eq. (9) independently from each 

other, this method to find the transformation equation is termed "Schwarz-Christoffel 

transformation". 

 

The equation for the mapping of the upper w-half plane onto the exterior of a polygon 

(Figure 4.3) is: 

 

( )
( ) ( )

z w u d w

w w w wi

n

i

w
i= −

− −=

−

∞ ∞

∫
1

1

2 2
0
Π ϕ π

*
 (16) 

and 

( ) ( ) ( )
z d w

w u w w w wi
i

n

w

i
=

− ⋅ − −∏
∫

∞ ∞
=

α π 2 2

1

0 *
 . (17) 

 

The point w w= ∞  is mapped onto the point z = ∞ by this transformation. Hence the 

transformation equation has a pole at w w= ∞  and at the conjugate complex value 



4.   Mapping of Polygonal Boundaries 
_____________________________________________________________________________________  

Vs. 1.1 

7

w w ∗
∞= . Like for the preceding mapping onto the interior of a polygon in this case the 

following is also valid: 

– The term with u i = ∞  is omitted. 

– The angles ϕ i are inside the field map. They are the exterior angles of the polygon. 

– For the sum of the angles holds: 
 

( )ϕ πi
i

n

− =
=
∑ 1 2

1

 (18) 

α πi
i

n
= −

=
∑

1
2  (19) 

 

If w = ∞ is mapped onto z = ∞ , then Eq. (10) is valid without modification, because 

this case can also be interpreted as mapping onto the interior of a polygon. 

 

 

 

 

 

 

 

 

 
Figure 4.3: Mapping of the upper half plane onto the exterior of a polygon 

 

When the transformation equation for a polygon mapping is calculated, three of the un-

knowns ui, u∞ and v∞ can be arbitrarily chosen. With these three the location of the 

polygon in the z-plane is well-defined. In case the polygon is symmetrical, up to five 

unknowns can be arbitrarily chosen, by similar symmetrical arrangement of the points 

in the w-plane. 

 

A
B C D E

uD

A

B
C

D
E

a) b) 

w

z

A

v

u

y

x

w∞

w∗
∞

ϕA

ϕB

ϕC

ϕD

ϕE
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The evaluation of the Schwarz-Christoffel integral in Eq. (9) yields only in special cases 

analytical solutions. These cases can be roughly categorized as follows: 

– For up to two vertices with angles of π/2 or 3π/2 and additional vertices with angles 

of 0 or π, solutions are found with elementary functions. 

– For up to three or four vertices with angles of π/2 or 3π/2 and additional vertices with 

angles of 0 or π, solutions are found with elliptic functions. 

– For symmetrical field maps the above given number of vertices can be duplicated. 

 

In all other cases, i.e. for more vertices with angles of π/2 or 3π/2 and for polygons with 

angles, which are not multiples of π 2, the solution of the integral is only possible in a 

few special cases. But also in those cases, where the field map cannot be determined, 

under certain circumstances the distribution of the field strength can be determined with 

Eq. (7). 

 

For the evaluation of the Schwarz-Christoffel integral partial fraction expansion and 

substitution are commonly used. Quite often used substitutions are e.g. of the form: 

 

w w= cos 1 ⇒ w1 1= arccos w  and d w w d w= − −1 2
1  (20) 

w
w

=
1

2
1cos

 ⇒ w
w1
1

=
⎛

⎝
⎜

⎞

⎠
⎟arccos  and d w w w d w= −2 1 1  (21) 

w h w= sin 2
1 ⇒ w w1 = arcsin h  and d w w w d w= +2 1 1  (22) 
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Example 1:  Field map of a right-angled step (Mapping A 6) 

 

According to Figure 4.4 the uniform field of the upper w-half plane shall be mapped on-

to a step in the z-plane. In order to have a simple integral, the three freely selectable 

vertices ui are placed at ∞ and at ±1. 

 

Vertex : A B C 

Angle α i  : 2π  − π 2 π 2 

u i : ∞ −1 +1 

 

 

 

 

 

 

Figure 4.4: Example 1 

Condition (13) is satisfied. The term for point A is omitted because u A = ∞ . From Eq. 

(14) follows: 

 

( ) ( )
d z
d w w w

=
+ −−

1
1 11 2 1 2  (23) 

 
 

z w
w

d w
w

=
+
−∫

1
10

 (24) 

A
B C

+1

A
B

C A

a) b) 

w

z

A

v

u

y

x-1

αB

αC



4.   Mapping of Polygonal Boundaries 
_____________________________________________________________________________________  

Vs. 1.1 

10

From a table of integrals the following solution for the integral is found: 

 
z w ar w n= − + +2 1 2cosh .l  (25) 
 

The constant ln 2  is omitted, because it has no influence on the field map. The solution 

of the problem is: 

 
z w ar w= − +2 1 cosh . (26) 
 

The location of the points B and C in the z-plane are found by inserting into the equa-

tion. 
 

Point C: w C = 1 ⇒ z C = 0 

Point B: w B = − 1 ⇒ z jC = π  . 

 

Example 2:  Two parallel half planes above a conducting infinite plane (Mapping 

                      P 3.6) 

 

According to Figure 4.5 the upper w-half plane shall be mapped onto two parallel half 

planes above a conducting infinite plane. The three freely selectable points u i are de-

termined so that A lies at ∞, C at −1 and D at 0. 

 

Vertex : A B C D E 

Rotation angle α i  : 2π  −π π  −π π 

u i : ∞ -a −1 0 b 
 

With Eq. (14) can be written: 

( )
( ) ( )

z
w a w

w w b
d w

w

=
+

+ −∫ 10

 (27) 
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Figure 4.5: Example 2 
 
 

The integrand has to be converted first, so that it is possible to find the corresponding 

integrals in a table of integrals: 

( ) ( ) ( )
z w

w w b
a w

w w b b
d w

w

=
+ −

+
+ − −

⎛

⎝
⎜

⎞

⎠
⎟∫

2

2
0 1 1

 . (28) 

 

The solution is: 

( ) ( )( ) ( )
( )

z w a b n w w b
b a b

b
n w b

w
= +

+ −
+ − +

+ − −
+

−
+

1
2

1
1 1

2 1 1

2

l l  . (29) 

 

By inserting the points B and D into this equation, the conditional equations h(a,b), 

q(a,b) and d(a,b) are found, with which it is possible to calculate the location of the half 

planes as functions of the parameters a and b. In Mapping P 3.6 the same transformation 

equation (29) is used. In addition the line CDE in the w-plane is set to a different poten-

tial with the help of a pre-transformation. This finally produces the field map of a con-

ducting half plane I with the potential u 1 between a conducting infinite plane and a par-

allel conducting half plane II, both with the potential 0. 
 
 
 

A
B C D E

b

A B
C

D
E

a) b) 

w

z

A

v

u-a -1

C

E A

d

h

q

I

II
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Example 3:  Rectangular conductor in a uniform field (Mapping A 10.1) 

 

If a rectangular conductor is placed into a uniform electric field (Figure 4.6a), then the 

horizontal center lines on the right and left side of the conductor are a potential line. 

The field map is found by mapping the upper w-half plane onto the boundary in Figure 

4.6c. By taking advantage of the symmetry the vertices C and D are chosen at ±1 and 

the vertices B and E at ±1/k (with k < 1). 

 

Vertex : A B C D E 

Angle α i  : 2π  π 2 −π 2  −π 2  π 2 

u i : ∞ −1 k −1 1 1 k  

 

With Eq. (14) this leads to: 

( ) ( ) ( ) ( )
d z
d w w k w w k w

=
+ + − −− −

1
1 1 1 11 2 1 2 1 2 1 2  (30) 

 

z w
w k

d w k w
k w

d w
w w

=
−

−
=

−

−
∫ ∫

2

2 2
0

2

2 2
0

1
1

1
1

 . (31) 

 

If the constant factor k is omitted, the solution can be written as: 

( )z w
k w

d w B w k
w

a=
−

−
=∫

1
1

2

2 2
0

,  , (32) 

 

the algebraic form of the function B (w, k), a specific elliptic integral (see Chapter 

12.3). 
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Figure 4.6: Example 3 



4.   Mapping of Polygonal Boundaries 
_____________________________________________________________________________________  

Vs. 1.1 

14

 

Example 4: Mapping of the upper w-half plane onto the exterior of a thin strip 

 

The three arbitrary selectable coordinates in the w-plane are determined as follows by 

taking advantage of the symmetry of the field map: 

1. Coordinate: The two vertices on the sides of the strip, B and C, are placed at 

u = ±1. 

2. Coordinate: The point A in the origin below the strip is placed at u = ± ∞ . 

3. Coordinate: The point ∞ in the z-plane is placed at v = 1 and w∞ = j respectively. 
 
 

Vertex : A B C 

Angle α i  : 0 − π  − π  

u i : ∞ −1 +1 

 

Inserting in Eq. (17) gives: 
 

( ) ( ) ( ) ( )
z d w

w w w j w j

w

=
+ − − +− −∫ 1 11 1 2 2

0

 (33) 

 

( )
z w

w
d w

w

=
−

+
∫

2

2 2
0

1

1
 (34) 

 

( ) ( )
z w

w
d w d w

w

w w

=
+

−
+

∫ ∫
2

2 2
0

2 2
01 1

 (35) 

 
 

These integrals can be expressed by elementary functions. The solution is: 
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A
B C

+1 AB
C

A

a) b) 

w
z

A

v

u

y

x-1

αB

αC

+j

-j

 

z
w

w
=

+2 1
 . (36) 

 

A factor 2 is added, so that the points B and C of the field map are located at ±1. 

 

z
w

w
=

+

2

12
 . (37) 

 

The transformation equation in this form is not feasible for a technical application. The 

two line charges at ±∞, which create the uniform field in the w-plane, have been map-

ped into the origin below the strip. There is now the source of a dipole field (Figure 

4.7). 

 

 

 

 

 

 

 

 

 

Figure 4.7: Example 4 

 

In this mapping the real axis is bent downwards in the points B and C by 180°. The 

complete lower w-half plane is folded up and vanishes in the interior of the thin strip. 

The point w j=  is mapped onto z = ∞ . Therefore a pre-transformation (see Chapter 5) 

is used in Mapping B 2 which places two line charges with the magnitude ±1 at ± j in 

the w-plane, so that the real axis remains a potential line. These two line charges create 
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in the image plane the field map of a charged thin conducting strip, where all field lines 

emanate from the strip and end at the infinite point (Figure 4.8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Mapping B 2, conducting strip against ∞ 
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5. Pre-Transformations 
 
 

In the preceding chapters always the uniform field in the w-plane was mapped onto the 

z-plane for the conformal mapping z f w= ( ) . All these mappings can be varied or 

modified, if not the uniform field, but a non-uniform field in the w-plane is mapped 

onto the z-plane. This method is termed pre-transformation. Mathematically this means 

 
 z = f1 (w1)   and  w1 = f (w) (1) 
 

where f w1 1( )  is the original transformation equation and w f w1 = ( ) the newly added, 

non-uniform field. Such pre-transformations can be employed multiple times succes-

sively, e.g..: 

 

 

w f w

w f w

w f w

z f w

1

2 1 1

3 2 2

3 3

=

=

=

=

( )

( )

( )

( ) .

 (2) 

 
 

In the following some examples are given to illustrate the procedure. 

 

Example 1:  Line charge between two parallel planes 
 

The field map of a line charge, located in the middle between two parallel planes, is to 

be determined (Figure 5.1). From Chapter 2.3 it is known that the function z n w= l  

maps the upper half plane onto a parallel strip in the image plane. Hence the logarithm 

solves the first part of the mapping problem. This function produces two parallel con-

ducting electrodes. Only the line charge in the middle is missing. In Figure 2.3 it can be 

seen that this point E is at + j. If a line charge is created there, the field map, which is 
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sought, is found. Furthermore the condition has to be satisfied that the real axis in the 

w-plane in Figure 5.2 must be a potential line. Therefore, according to the theory of im-

ages, two line charges of equal size and opposite sign must be placed in the w-plane 

(Figure 5.3). The transformation equation, which belongs to this charge distribution, is 

according to Chapter 2.7: 

 
 z j w= tanh .  (3) 
 

This field map is now transformed with the logarithm and thus solves the problem (Fig-

ure 5.4). 
 

 Pre-transformation:       w j w1 = tanh  (4) 
 

 Transformation:            z n w= l 1 (5) 
 

The complete transformation equation is 
 
 z n j w= l ( tanh ) . (6) 
 

This function maps the uniform field in the w-plane onto the field map of two parallel 

conducting planes with a line charge in the middle. 

 

Finally this transformation equation can be rewritten in order to center the field map in 

the image plane. With Eq. (2.13)  
 
 tanh tan ( )w j jw= −  (7) 
 
and ( )z n jw n j w= − − =l ltan ( ) tan ( )  . (8) 
 

The transition from tan ( )j w  to tan (w) does not change the transformation. Only the as-

signment between u, v and potential lines and field lines is exchanged. By the addition 
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Figure 5.4: Pre-transformation for the mapping z = ln (j tanh w) 
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of the constant − j π 2 the line charge is moved into the origin of the image plane. So 

the final solution is (Figure 5.5, Mapping H 2): 
 
 z n w j= −l tan π 2  . (9) 

In the same manner as in this example arbitrary configurations of line charges or line 

dipoles can be placed between the two parallel planes. Spacious electrodes can also be 

added to a mapping by a pre-transformation. In the following Example 2 a thin conduct-

ing strip is placed between the two parallel planes. 
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Figure 5.5: Final solution for Example 1: z = ln tan w – j π/2 (H 2) 

b) 

w

BB

C

a) 

B
C

A

A

E

D

C

π/2

z

BC

E

D
π/2

EE

- /2π

C

c) 

+ρL

- /2π

z

+

+

A

A



5.   Pre-Transformations 
_____________________________________________________________________________________ 

Vs. 1.1 

7

 

Example 2:  Field map of a strip transmission line 
 

The field map of a conducting strip in the middle between two parallel, infinite conduct-

ing planes (Figure 5.6) is to be determined. To solve this problem, a pre-transformation 

is sought for the mapping z n w= l , which contains a conducting strip on the imaginary 

axis of the w-plane and where the real axis is a potential line. From the table of map-

pings the Mapping E 3, rotated by + 90°, is found. 
 

 Transformation:               z n w= l 1 (10) 
 

 Pre-transformation:           w j sn w k1 = ⋅ ( , )  . (11) 
 

Figure 5.7 illustrates the two mappings. The conducting strip starts in the image plane at 

point E, there, where in Example 1 the line charge was located, and extends up to the 

point D and F respectively. Hence the width d of the strip is: 
 
 ( )d n j k n k= =Re l l  . (12) 
 

 

 

 

 

 

 

 

 

 

Figure 5.6: Symmetrical strip line (Example 2) 
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In order to center the field map, the center of the conducting strip is moved into the ori-

gin of the z-plane (Mapping H 7): 
 

 ( )z n j sn w k j d= − −l ( , ) π
2

2  (13) 

 
 z n sn w k d= −l ( , ) 2 (14) 

 

The conducting strip, which is imported into the w1-plane by the pre-transformation, 

remains to be a strip, despite the transformation with the logarithm, only because he lies 

on a straight line in the w1-plane, which is again mapped onto a straight line. As shown 

in Figure 5.2 the vertical, red straight line AC  is mapped onto the horizontal, red 

straight line AC  by z n w= l . Strips or line segments, which are placed on this straight 

line, maintain their shape throughout the process of the pre-transformation. 

 

Whereas point-shaped sources (line charges, line dipoles) can be placed into existing 

mappings at arbitrary locations with an appropriate pre-transformation, this method is 

restricted for spacious electrodes to special cases, as long as exact solutions are wanted. 

Usually only thin strips like in Example 2, which may also extend up to infinity, can be 

created in this way. Furthermore they must lie in symmetry planes of the field map, in 

order to maintain their shape. 

 

In case that only an approximate solution is sought, there are a lot more possibilities 

given by the method of pre-transformations, to determine unknown potential fields with 

the help of known mappings. 
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Figure 5.7: Example 2, z = ln {j sn(w,k)} (H 7) 
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Example 3:  Conducting strip 
 

In Example 4.4 the upper half plane was mapped onto the exterior of a conducting strip. 

This resulted in a line dipole in point A (Figure 4.7). However the field map of a 

charged thin strip against the point ∞ is sought. In order to get this, a line charge has to 

be placed into the point ∞ of the z-plane. This point lies at ± j in the w-plane. As al-

ready employed in Example 1, the necessary pre-transformation is: 

 
 

 Pre-transformation:       w w1 =  j tanh .π  

 (15) 

 
The transformation used in Example 4.4 was: 
 
 

 Transformation:            z
w

w
=

+

2
1

1

1
2

 (16) 

 

Both functions combined and converted yields: 

   

  z      =     j sinh (2wπ). 

 

According to Chapter 2.5 this mapping is topologically the same as  

   

  z      =     cosh (w π). 

 

This is Mapping B 2 in the table of mappings. 
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Example 4:  Thick conducting plate 
 

The field map in the vicinity of the edge of a thick right-angled plate according to Fig-

ure 5.8a is should be determined. From the symmetry of the configuration follows that 

the center line is a field line. This leads to the new boundary in Figure 5.8b. This 

boundary has been solved already in Example 4.1, however as a continuous potential 

line (Figure 4.4). Figure 5.9 shows this mapping once again, but the straight line CA  is 

now plotted in red as a field line and the former w-plane is named w1-plane. The corre-

sponding mapping is Eq. (4.13): 

 
 
 z ar w w= + −cosh .1 1

2 1  (17) 

 

In order to convert CA  into a field line, a pre-transformation is needed, which creates 

the field in the w1-plane. From the table of mappings the Mapping A 1.2 is found, how-

ever multiplied by − 1 and displaced by + 1: 

 
 
 w w1

21= −  . (18) 
 

Thus the problem is solved. 

 

The solution given in the table of mappings for Mapping A 5 is in this case a com-

pletely different equation. There are many ways, to find a transformation equation for a 

given problem. Depending on the method used, the derived functions are very often 

completely different. Even a different choice of the origin changes the transformation 

equation. The corresponding field maps are nevertheless all topologically identical. 
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Figure 5.8: Thick conducting plate, Example 4
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Example 5:  Two coplanar conducting sheets centered between two parallel planes  
 

The field map of the configuration illustrated in Figure 5.10a is to be determined. Ac-

cording to symmetry the vertical symmetry axis is a potential line and the horizontal 

axis a field line. Thus the mapping problem is reduced to the contour in Figure 5.10b. 

From Chapter 1.4 it is known that the function arcsine maps the upper half plane onto a 

half strip (Figure 5.11). The colors used in this figure already indicate that the line DE 

should be a field line. To reach this, the field of a conducting strip like in Example 3 is 

used as pre-transformation. However this conducting strip is displaced by 1 2+ a  from 

the origin of the w1-plane in Figure 5.11a. With this the pre-transformation is: 
 

 w
a

w
a

1 2
1

2
= ⋅ + +cosh( ) .π  (19) 

 

In Figure 5.11a the straight line DE, which was interpreted as conducting strip in Ex-

ample 3, is plotted in red, according to the problem in Figure 5.10b. Field maps are gen-

erally orthogonal sets of curves and the denotation as field line or potential line is arbi-

trary, as well as the assignment of the colors red and blue. 

 

In order to place the field map in the I. quadrant as in Figure 5.10b, the configuration in 

Figure 5.11b is displaced by π 2 and rotated by 90°. Then the transformation equation 

is (Mapping H 6.4) 
 

 z j w= −⎛
⎝⎜

⎞
⎠⎟

π
2 1arcsin  (20) 

 

 ( )w a w1 1
2

1= + + cosh ( ) .π  (21) 

 

The parameter a is determined from the mapping of point E with Eq. (20) and (2.12): 

 
 s ar a= +cosh ( )1  (22) 
 
 a s= −cosh ( ) .1  (23) 
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Determination of point B: 

 

In Eq. (19) w 1 1= −  is inserted. 

 
 
 ( )( )− = + + +1 1 2 1a u jDcosh π π  
 
 

 ( )1 cosh 1 4 .Bu ar a
π

= +  (24) 

 

It is evident from inspection of Figure 5.11 that it is possible to create a whole family of 

mappings only by displacing and/or magnifying the red straight line DE  in the w1-

plane (e.g.. H 1.4, H 6.1, H 6.2, H 6.3, H 6.4, J 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.10: Example 5
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Figure 5.11: z = arcsin w1           (Figure a, b) 
   w2 = cosh (wπ)        (Figure c, d) 
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Example 6:  Two coplanar conducting sheets excentric between two parallel planes 
 

Figure 5.12a shows the boundary of the field map sought-after. Due to the symmetry the 

symmetry plane is a potential line (Figure 5.12b). With the method of mapping of po-

lygonal boundaries, the function  
 

 ( )z ar w
a

b ar a w= ⎛
⎝⎜

⎞
⎠⎟
+2 21

1coth coth  (25) 

 

is derived, which maps the upper half of the w1-plane onto the interior of the region and 

the real axis according to Figure 5.13a onto the boundary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12: Example 6 
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In the next step a pre-transformation is needed, with which the boundary FGH in Figure 

5.13b gets a constant potential u1 and the boundary FEAH a differing constant potential 

u2. In the w1-plane both boundaries touch each other in the points F and H. There the 

field strength is infinite. The appropriate pre-transformation therefore must have a line 

charge in point F and another one in point H. As also the line AE must be a potential 

line, a distribution of the charges like in Figure 5.13d is necessary, to create the final 

potential distribution. The corresponding transformation equation is found in the table 

of mappings (Mapping L 4 with p = a2, multiplied by 1 a  and rotated by − °90 ): 

 

 ( )
( )

w j
a

w a
w1

4

1
= −

−
−

exp
exp

π
π

 . (26) 

 

In Figure 5.13e it is indicated that both line charges are at +∞  in the image plane. Far 

away from the origin they create the uniform field  in the parallel channels above and 

below, which later on in the vicinity of the points E, G and A turns into a non-uniform 

field. When circulating the boundary in Figure 5.13b there is a change of direction in 

the points C and G. Mathematically this is: 
 

 
d z

d w w a1
1

0
=

= .   (27) 

 

With this equation the parameter a is determined and inserted in Eq. (25) the dimension 

s. All other values are found in the same way as in the preceding examples by insertion 

of the corresponding points. The results are assembled at Mapping D 5. 

 

Hence the problem is solved. By the choice of other, appropriate pre-transformations in 

combination with Eq. (25) the Mappings H 6.7, H 6.8, H 6.9 and H 6.10 are produced. 
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Figure 5.13: Solution for Example 6 
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a) 

b) 

z

 

Example 7:  Rectangular Outer Conductor, Symmetric Strip as  

    Inner Conductor 
 

Figure 5.14a illustrates the electrode configuration whose field map is to be determined. 

Because of the symmetry it is sufficient to consider the rectangular region shown in Fig-

ure 5.14b. The elliptic integral of the first kind (Chapter 12, Figure 4) is used to map the 

I. quadrant onto the interior of the rectangle. 
 
 
 ( )z F w ka= 1 1,  . (28) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14: Example 7, a) Physical problem, 

         b) Transformation problem 
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With an appropriate pre-transformation the straight lines AB and CDE must be trans-

formed into potential lines and the straight lines AE and BC must be transformed into 

field lines in the w1-plane (Figure 5.15c). The denotation potential line and field line 

may of course be exchanged. The corresponding transformation equation is found either 

with Chapter 11, Figure 2, or from the table of mappings with Mapping E 3: 

 
 
 w sn w k2 = ( , ) . (29) 

 

In order to place point C at z = 1, the function is multiplied with k. 

 
 
 w k w k sn w k1 2= ⋅ = ⋅ ( , ) . (30) 

 

Hence the solution of the initial problem is: 

 
 
 ( )z F k sn w k ka= ⋅ ( , ), 1  . (31) 

 

This function maps a rectangle (Figure 5.15a) onto another rectangle (Figure 5.15d). It 

is evident that by magnifying and/or moving the red straight line BC in the transition 

from w2 to w1, more, different mappings are produced (e.g.. Mapping I 2.2, I 2.3 and I 

2.6). Corresponding to Example 1 it is also possible to place a line charge into the rec-

tangle (Group of mappings I, e.g. I 1) or a dipole (Group Q, e.g. Q 4). 

 

To normalize the mapping, so that the rectangle has the side length 1 and the aspect ra-

tio τ, the transformation equation is divided by K (k1) (Mapping I 2): 

 
 
 ( ) ( )z F k sn w k k K ka= ⋅ ( , ), /1 1  . (32) 
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Inserting point B gives  
 
 ( ) ( )d F k k K ka= , /1 1  . (33) 
 

This equation can be solved for k: 

 
 ( )( )k sn d K k k= ⋅ 1 1,  . (34) 
 

If the aspect ratio τ is given, k1 can be determined (Eq. 13.13): 
 
 ( )k1 2 3

20 0= ϑ τ ϑ τ( , ) ( , )  . (35) 
 

Point D is found in the w-plane by insertion: 
 

 [ ]
1 1

1 1' ( ), Re ,D D ak sn u j K k k u F k
k k k

⎛ ⎞
= + ⇒ = ⎜ ⎟

⎝ ⎠
. (36) 

 

Now all parameters and coordinates of this mapping are known.
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Figure 5.15: Sequence of the pre-transformations for Example 7 
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Example 8:  Symmetrical transmission line with three conducting strips 
 

Figure 5.16a shows a conducting strip symmetrically arranged between two more strips. 

Figure 5.16b is the reduction on the I. quadrant. Utilizing the method of pre-

transformations to determine the field map, a mapping must be found, whose outside 

contour corresponds with Figure 5.16b, whereas the potential distribution along this 

contour may be arbitrary. From Chapter 12, Figure 11, or from Mapping E 2 the Zeta 

function is found to be appropriate: 
 
 ( )z Z w k jae= +1 1, '  . (37) 
 

This maps the I. quadrant of the field map sought-after onto the interior of a rectangle 

(Figure 5.17c, d). The pre-transformation, necessary to create the appropriate potential 

distribution on the boundary of this rectangle (Figure 5.17c), is already known from Ex-

ample 7. The transformation 
 
 ( )w F k sn w k ka2 1= ⋅ ( , ),  (38) 
 

(Figure 5.17a, b) has to be rotated by 90° and to be displaced by ( )K k' 1  
 
 ( )w K k j w1 1 2= +'  . (39) 

 

When rotating a rectangle by 90° it has to be taken into account that 
 
 ( ) ( )K k K k1 1' '=  (40) 
and 
 ( ) ( )K k K k' '1 1=  (41) 
 

holds; i.e. the modulus changes from k1' to k1 or in general from k to k'. 

 

Hence this mapping problem is solved. The individual parameters are given at Mapping 

P 5.4. They are determined as in the preceding examples by insertion of the individual 

points into the transformation equation. When inspecting Figure 5.17 it is evident that it 
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a) 

b) 

z

+
-

-

is easily achieved with another, similar pre-transformation, to rotate the center conduc-

tor of the transmission line by 90°, so that all three strips are parallel to each other 

(Mapping P 5.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16: Example 8     a) Physical problem, 

            b) Mapping problem 
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Figure 5.17: Sequence of the pre-transformations for Example 8 
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6. Successive Transformations 
 
A given mapping f1(w) can be transformed once again by a second mapping f2(w). In 

this way it is possible, to modify a given mapping f1(w) systematically. The procedure 

is the following: 
 

Given mapping:                         ( )w f w1 1=  (1) 

Successive transformation:       ( )z f w= 2 1  (2) 

Result:                                       ( )[ ]z f f w= 2 1 . (3) 

 

Three successive transformations consecutively: 
 

( )( )( )( )z f f f f w= 4 3 2 1 . (4) 

 

The procedure is similar to the pre-transformation. Only the sequence of the transforma-

tions is reversed. The main difference is that the boundaries of the given mapping are 

altered by the successive transformation. A first successive transformation may be suc-

ceeded by second one and so on. 

 

This method, which looks quite complicated in this notation, is extremely simple in the 

practical application, because each single successive transformation can be analyzed 

and carried through by itself. 

 

 

( )
( )
( )
( )

1 1

2 12

3 23

34

:

1. :

2. :

3. :

Given w f w

Step w f w

Step w f w

Step z f w

=

=

=

=

 (5) 

 



6.   Successive Transformations 
_____________________________________________________________________________________  

Vs. 1.1 

2

The procedure is similar to the solution of an integral by several substitutions in a row. 

However with the difference that it is possible, to find the result, as demonstrated in the 

following, target-oriented and easily interpretable. For instance for mapping R 7.2 in the 

table of mappings there were five mappings carried through consecutively. In fact there 

were even more successive transformations, because e.g. the first transformation equa-

tion, as shown in the following Example 1, can be separated into three successive trans-

formations. 

 

Besides being illustratively and simple because of the separation in simple single steps 

the method of successive transformations has a further advantage: In most cases it is ve-

ry easy to find the inverse of the transformation equation (e.g. Mapping R 7.2). 

 

Inverse function of Eq. (4): 

 
( )
( )
( )
( )

w f z

w f w

w f w

z f w

3 4
1

2 3
1

3

1 2
1

2

1
1

1

=

=

=

=

−

−

−

− .

 (6) 

 

The pre-transformations of the preceding chapter are strictly spoken not an independent 

method, but may as well be referred to as successive transformations. 

 

6.1 The Function z = w1
ϕ/π 

 
Some basic possibilities, to modify a given mapping w w1 ( ) by a successive transfor-

mation with the function z w= 1
ϕ π/ , are comprised in Figure 6.1. 

 

In Figure 6.1a the field of a thin conducting strip against ∞ (Mapping B 2) is changed 

into the field of two thin conducting strips, symmetrically arranged, with equal charge 
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(Mapping S 2.2), after moving the strip away from the origin and using a successive 

transformation with z w= 1
1 2/ . Due to the exponent 1/2 the negative real axis is bent 

upwards by 90° and creates the symmetry plane of the new mapping. 

 

In Figure 6.1b the field of two symmetrically arranged thin conducting strips with equal 

but opposite charge (Mapping E 3) is transformed with z w= 1
2  into the field of a thin 

conducting strip against a thin half plane (Mapping K 3). In this case the positive imagi-

nary axis is bent by 90° to the left and creates the half plane of the new mapping. The 

same Mapping E 3 yields after a displacement by +1 with z w= 1
1 2/  a symmetrical three 

strip transmission line (Figure 6.1c). This is a special case of Mapping P 5. However a 

different successive transformation was used for Mapping P 5, because the widths of the 

conducting strips cannot be varied independently from one another in the mapping of 

this example. Alternatively it is yet possible to reach this more general result with 

z w= 1
1 2/ , if as initial mapping the field of two conducting strips with different widths 

(Mapping F 5.1) is used. 

 

With the successive transformation z w= 1
ϕ π  all elements along the positive real axis 

remain there. It is possible to duplicate them in this way or to expand them to symmetri-

cal multi-conductor configurations. 

 

Furthermore this successive transformation yields a large part of the mappings with ra-

dial symmetry of Group G. The procedure is demonstrated in Figure 6.1d. Starting with 

Mapping F 3, the field map of a coaxial line with a slotted, thin outer conductor, the 

successive transformation z w n= 1
1  yields a field map in an angular range from 0 

through π n, which can be symmetrically complemented to the field map of a coaxial 

line with a uniformly, n-fold divided outer conductor (Mapping G 4). All elements that 

are placed on circles concentric to the origin, maintain their shape by the successive 

transformation z w n= 1
ϕ . 
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Figure 6.1: The successive transformation z w= 1

ϕ π  

z

z

z

z

a) w1
1/2

b) w1
2

c) w1
1/2

d) w1
1/4

w1

w1

w1

w1

+

-

-

-

+

+

+

+

+

S 2.2

K 3

P 5

G 4

+

+

+

-

-

-

-

-

-

+

+

+

π/4

-

-

-

B2

E3

E3

F3



6.   Successive Transformations 
_____________________________________________________________________________________  

Vs. 1.1 

5

 

Example 1:  Conducting plane with salient edge 
 

Mapping 2.1 is an example where the successive transformation z w= 1
ϕ π  is applied 

twice. According to the sequence of the pictures in Figure 6.2 the uniform field w  is 

transformed with w w1
2=  into the field map of a thin plate. This is displaced by -1 

with w w2 1 1= −  and then folded up to the final result with z w= 2 . If the equations 

are combined, the result is z w= −2 1 , the Mapping A 2.1. 

 

Summary:  With the successive transformation z w= 1
ϕ π  it is possible amongst others 

to complement a mapping symmetrically or to generate configurations with radial sym-

metry. All elements, being located on rays through the origin and on concentric circles 

around the origin maintain their shape. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Example 1,  z w= −2 1 , Mapping A 2.1 

z

a) Uniform field w b) w  = w1
2

c) w  = w  - 12 1 d) z = w2
1/2

w w1

w2

-1
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6.2 Arcsine 
 
Figure 6.3 gives an overview, which modifications of a given mapping w 1 are obtain-

able by a successive transformation with the function arcsine. In all three examples the 

real axis is bent downwards and upwards at ±1 by 90°, so that a parallel strip of the 

width π is created. All mappings produced in this manner are single periodic (Group of 

mappings H) along the real axis. All elements on the real axis and on the imaginary axis 

of the original mapping w 1 maintain their shape (Exception: see Mapping H 6.3). Ele-

ments that are on the real axis between −1 and +1, are mapped onto the real axis of the 

z-plane between –π/2 and +π/2; all elements outside are mapped onto the straight line 

± ±π 2 jy . 

 

Two different results are found in Figure 6.3c, depending upon if a = 1 or b = 1 in the 

w 1-plane. [In the first case the function w 1 is divided by a, in the second case divided 

by b]. 

 
The successive transformation with the arcsine leads to useful results, if the real axis in 

the w 1-plane is for 1 1u ≥ continuously composed of field line segments and/or poten-

tial line segments. Then the result is a single periodic function, which can be perpetu-

ated via mirror imaging at x = ± π 2. 

 

Successive transformations with the functions arccos w1, arsinh w1 and arcosh w1 yield 

similar mappings (see Figure 2.5 and Eq. (2.10) through (2.12)). 
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Figure 6.3: Successive transformations with z = arcsin w1 
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6.3 Sine 
 
The sine function as inverse of the arcsine thus produces the reverse mapping. As illus-

trated in Figure 6.4, a parallel strip in the w1-plane is mapped onto the complete z-

plane. Elements on the boundary of the parallel strip and on the imaginary axis maintain 

their shape. A horizontal straight line is transformed into an ellipse. 

 

 

 

 

 

 

 

 

 

 

Figure 6.4: Successive transformation with z = sin w1 

 

 

Example 2:  Vertical conducting strip in horizontal slot 
 

The starting point to solve the problem is Example 5.2. There the field of a conducting 

strip between two parallel planes was determined (Figure 6.5a). 
 

( )1 ,w n sn w k⎡ ⎤= ⎣ ⎦l  (7) 

To begin with, this field map is rotated by 90° and then displaced by the distance a (Fig-

ure 6.5b). 

( )w j a w2 1= − . (8) 

zw1

π/2- /2π

A

B

C D

F

E
B

C

D

E
A

F

Ellipse

Hyperbola

v1
sinh v1

cosh v11
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a)

b)  w  =  -j w  + a2 1 c)  z = sin w2

w1

w2

z

d

a b

a-d c

1-1

A B
C

A

B

C

π/2

Now the successive transformation with the sine function yields the solution of the 

problem (Figure 6.5c): 
 
z w= sin 2. (9) 
 

The distances b and c are determined to: 

 
( ) ( )sin sinhjb j a d b a d= − ⇒ = −⎡ ⎤⎣ ⎦  (10) 

 
( )jc j a c a= ⇒ =sin sinh . (11) 

 

In the same way Mapping P 2.3 is produced from Mapping H 3, Mapping P 2.2 from 

Mapping H 2.1 and Mapping P 3.7 from Mapping H 1.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5: Example 2, Mapping P 4.1 
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Example 3: Conducting strip in elliptical outer conductor 

 

In order to determine the field map of a conducting strip, which is centered inside an el-

liptic outer conductor, it is possible according to Chapter 5, Example 3, to use the trans-

formation equation ( )z w= cosh π  (Mapping B 2). All potential lines in this field map 

of a conducting strip against ∞ are ellipses. Yet this mapping has unfortunately only one 

freely selectable parameter v1. For a = 1 holds (Figure 5.4): 
 
b v= tanh 1 (12) 
 

and             d v= 2 1cosh . (13) 
 

The dimension b as well as d is defined by v1. 

 

However a field map, where the aspect ratio b/a of the ellipse and the width of the con-

ducting strip d could be preset independently from each other, would be much more 

useful. To reach this, in Mapping I 2.2 (Figure 6.6a) 

 

( )w F k
k

sn w k ka1
1

1=
⎛
⎝
⎜

⎞
⎠
⎟, , ,  (14) 

which is generated corresponding to Example 5.7, the width of the rectangle is normal-

ized to π 2  
 

( )
w w

K k2
1

1 2
= ⋅

π . (15) 

 

Afterwards the rectangle is mapped by the successive transformation with the sine func-

tion onto an ellipse. According to Figure 6.4 a straight line parallel to the real axis is 

mapped onto an elliptical arc in this successive transformation. 
 

( )
z w

=
⋅

sin
cosh

2

2τ π
 (16) 
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In order to normalize the semi-major of the ellipse to the length 1, the mapping is di-

vided by ( )cosh τ π⋅ 2 . The semi-minor b is then 
 

( )
( ) ( )b =
⋅
⋅

= ⋅
sinh
cosh

tanh
τ π
τ π

τ π
2
2

2 . (17) 

 

Provided that the aspect ratio of the ellipse is given, i.e. if a = 1 the magnitude of b, then 

also τ  is known 
 

τ
π

=
2

ar btanh . (18) 

τ  is the aspect ratio of the resulting rectangle in Mapping I 2.2. With τ  the (comple-

mentary) modulus k1 of the elliptic integral of the first kind is defined (see Chapter 13 

and 14): 
 

( ) ( )[ ]k o o1 2 3
2

= ϑ τ ϑ τ, , .  (19) 
 

The distance AE in the original rectangle in the w 1 −  plane has the length f. According 

to Mapping I 2.2 the length f is defined by the modulus k of the sn function: 

 
( ) .1 1,k k sn f k= ⋅  (20) 

If w f1 =  is inserted into Eq. (14), the width of the conducting strip d can be deter-

mined with Eq. (16). With the inverse of all three successive transformations, f and 

hence k can be written as functions of d: 

 

( ) ( ) .1 1 1
2 arcsin ,k k sn K k a d k
π
⎧ ⎫= ⋅ ⋅ ⋅⎨ ⎬
⎩ ⎭

        for k ≤ k1 (21) 

 

For the case of a very wide conducting strip as illustrated in Figure 6.6b, the corre-

sponding calculation yields: 

( ) ( ) ( ) .1 1 1 1Re cosh ,
2

k k sn K k j K k ar a d kπ⎧ ⎫= ⋅ + ⋅⎨ ⎬
⎩ ⎭

    for k > k1 (22) 
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a)  k  k   ≤ 1

b)  k > k1

w1

w1

z

z

A

A

A

A

B

B

B

B

C

C

C

C

D

D

D

D

E

E

E

E

τπ/2

τπ/2

b

b

π/2

π/2

1

1

d

d

Hence all parameters of this mapping are known. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6: Example 3, Mapping F 4.1 

 

 

Example 4: Conducting strip in a slotted, elliptical outer conductor 

 

Starting point is Mapping H 7.9, rotated by 90° (Figure 6.7): 

 

( ) ( )

( ) ( )
w j n

K k
w ja

K k
w ja

jb1

4

4

2

2

= −
+

⎧
⎨
⎩

⎫
⎬
⎭

−
⎧
⎨
⎩

⎫
⎬
⎭

+l

ϑ
π

τ

ϑ
π

τ

,

,
 (23) 

 

The parallel strip has in this case the width π. By the successive transformation with the 

sine function 
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w1 z

A

A

B B
B

B

C

C

D

D

E

E

π

b1

π/2

F G
h

b

F

G

1 a1

+

+-
-

z w= sin 1 (24) 

the right half of the lower boundary is bent downwards by 180° in point D. The hori-

zontal strip AGF is transformed into an elliptical arc. The semi axes of the ellipse are: 
 
a b1 = cosh  (25) 

b b1 = sinh . (26) 
 

If the width of the parallel strip is not normalized to π but to π 2, the resulting field 

map is that of a conducting strip in an elliptical outer conductor with two slots. 
 

In an analogous manner like in these 4 examples a multitude of further mappings can be 

produced from single periodic mappings (Group H and J) and from double periodic 

mappings (Group I), which are not listed in the table of mappings. Elements along the 

outer boundary of the half strip and on the imaginary axis maintain their shape. Hori-

zontal straight lines are transformed into elliptical arcs and vertical straight lines into 

hyperbolic arcs. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7: Example 4, Mapping F 4.4 
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w1

z

A A
B

BC CD

D

E

E

1-1 F

F π

6.4 Logarithm 
 
The successive transformation z n w= l 1 maps the upper half plane onto a parallel strip 

of the width π (Figure 6.8). The lower half plane (in Figure 6.8 not shown) is accord-

ingly mapped onto the parallel strip between y = 0 and y = -π. The negative real axis is 

bent upwards by 180° in the origin, until both axes are parallel to each other. During 

this rotation the origin moves to the left into the point −∞ . All concentric circles 

around the origin become vertical straight lines; all rays through the origin become 

horizontal straight lines. 

 
The unit circle is mapped onto the imaginary axis between y = +π and y = -π. The inte-
rior of the unit circle goes over into the left half of the parallel strip, the exterior into the 
right half. The result of this successive transformation is a single periodic mapping. 
 
 
 
 
 
 
 
 

Figure 6.8: The Mapping z = ln w1 
 

Figure 6.9 illustrates some examples. In Figure 6.9a the positive imaginary axis BC is 

mapped onto the upper boundary of the parallel strip at y = π 2 and the negative imagi-

nary axis onto the lower boundary. The origin moves to −∞ . In Figure 6.9b the map-

ping of the boundary is carried out likewise and the two circular arcs are transformed 

into vertical straight lines. 

 

Figure 6.9c is an example for the mapping of the unit circle onto the imaginary axis be-

tween +π and -π.  
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Figure 6.9d contains the same mapping of the unit circle. The conducting strip on the 

real axis remains on the real axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9: Successive transformations with z = ln w1
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Example 5:  Line charges, periodically arranged, displaced against 

    each other  
 

The number of mappings which can be created by successive transformation with the 

logarithm may be increased, if not only those field maps are transformed, which are 

symmetrical to the imaginary axis, but also those, which are not symmetrical. It is pos-

sible for instance, with the already known field of two equal and opposite line charges 

(Figure 6.10a), to move the negative line charge into any predefined point. The positive 

line charge remains at +1, in order to be in the origin of the z-plane after the successive 

transformation. To reach all this, the positive line charge is first moved into the origin 

→ ( )w1 1−  and the distance is normalized to 1 → ( )w1 1 2− / . Then the predefined dis-

tance ( )1+ a  is created by multiplication with ( )1+ a  and finally the positive line charge 

is moved to +1 by addition of 1. All steps together yield: 

 

( )w w a2
1 1
2

1 1=
−

+ + . (27) 

 
With the successive transformation  
 

z n w= l 2  (28) 
 

the mapping problem is completed. The displacement d of the negative line charge is: 
 

d n a= l . (29) 

For the case illustrated in Figure 6.10b and c the coordinates a and d are negative. 

 



6.   Successive Transformations 
_____________________________________________________________________________________  

Vs. 1.1 

17

z
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Figure 6.10: Example 5, Mapping H 5 
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Example 6:  Asymmetrical stripline 
 
Mapping E 5 is the field map of a conducting strip in front of a conducting plane, which 

is rotated by the angle α from the horizontal, (Figure 6.11). With the successive trans-

formation 

 
z n w= l 1  (30) 
 

the surface of the conducting plane in the IV. quadrant (straight line AB) 
 

w r e j
1 = ⋅ − α  (31) 

 
is mapped onto a horizontal straight line, displaced by − jα . 
 

z n r j= −l α  (32) 
 

and the surface of the conducting plane in the II. quadrant (straight line AC ) 
 

( )w r ej
1 = ⋅ −π α  (33) 

is mapped onto a horizontal straight line, displaced by ( )j π α−   
 

( )z n r j= + −l π α . (34) 
 

The width s of the conducting strip is 
 

( )s n h n h= = −l l 1 .  (35) 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11: Example 6, Mapping H 7.3 
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6.5 Exponential function 
 
The mapping properties of the exponential function can be directly extracted from the 

preceding chapter, because it is the inverse of the logarithm. Only the sequence of the 

mappings has to be exchanged in the Figures 6.8 and 6.9. The exponential function 

maps the right side onto the left side. 
 

Further examples are compiled in Figure 6.12. Figure 6.12a and b illustrate how hori-

zontal straight lines are transformed into rays through the origin. By the successive 

transformation with the exponential function, the upper boundary is rotated to the left 

by 180°, comparable to the course of motions, when the cover of a thick book is opened, 

and at the same time the point −∞  moves into the origin of the z-plane. The Figures 

6.10c, d and e contain examples, how vertical straight lines are transformed into circular 

arcs. Straight line segments on the imaginary axis are transformed into sectors of the 

unit circle. 

 

All illustrated examples can be modified, if the parallel strip of the initial mapping is 

not normalized to the width π but to the width α. Thus the angle α is created in the z-

plane. This means that (if the positive real axis remains fixed) the negative real axis to-

gether with all other boundaries along this axis, can be rotated around the origin, up-

wards as well as downwards, depending upon the magnitude of α, i.e. if α is chosen α > 

π or α < π. 
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Figure 6.12: Successive transformations with the exponential function, 

           z = exp w1 
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Example 7:  Line charge between two concentric metal cylinders 
 

A successive transformation with the exponential function is not only possible for single 

periodic functions, but also for double periodic functions. As an example for this, the 

field map of a line charge inside a rectangle is the starting point (Figure 6.13). The ini-

tial mapping I 1.1 
 

( )( )w F a jb w ka1 = + ⋅ tanh ,π  (36) 
 

is converted such that the rectangle is located in the II. quadrant and that its height is ϕ  
 

( )
( )
( ) ( )

w w
K k

K k
K k

w
K k2

1 1 1
= ⋅ −

⎛

⎝
⎜

⎞

⎠
⎟ = −

⎛

⎝
⎜

⎞

⎠
⎟ϕ ϕ
τ' ' '

.  (37) 

 

Thus it is obtained that the straight line DC  is on the unit circle after the successive 

transformation 
 

( )z w= exp 2  (38) 

and that the circular arc has the aperture angle ϕ. This follows immediately from Eq. 

(38) by insertion of w j2 = ϕ  . The complete rectangle is mapped onto a segment of an 

annulus. The radius of the inner circle r is found by insertion of point A: 
 

r = −
⎛
⎝
⎜

⎞
⎠
⎟exp .ϕ
τ2

 (39) 

 

The line charge, in the w2-plane at r j0 = +α β , is mapped onto 
 

( )r r e e j
1 0= = ⋅exp .α β  (40) 
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Figure 6.13: Example 7, Mapping G 7
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By modification of a and b the line charge can be positioned anywhere within the seg-

ment of the annulus. The corresponding equations are assembled in Mapping G 7. If φ 

is set to π/2, then the result is, complemented to a configuration with radial symmetry, 

the field map of 4 line charges of equal size and opposite sign between two grounded, 

concentric circular cylinders (Figure 6.13d). Further examples for this type of succes-

sive transformation are the Mappings G 7.1 through G 7.3. 

 

 

6.6 The function z = 1/w1 
 
If a given mapping is inverted with z w= 1 1 , due to 

 
1 1

r e r
ej

j

⋅
= ⋅ −

ϕ
ϕ  (41) 

 

all points outside the unit circle are transformed into points inside the unit circle. The 

upper half plane is mapped onto the lower and vice versa. Only the points +1 and -1  

stay unchanged. As Figure 6.14 illustrates, rays through the origin are again mapped on-

to rays through the origin. Horizontal and vertical straight lines go over into sets of mu-

tually perpendicular circles through the origin. In general circular arcs in arbitrary posi-

tions in the w1-plane are transformed into circular arcs in the z-plane. The point ∞ is 

mapped into the origin. 

 

Figure 6.15 illustrates the effect of the inversion on various mappings. In Figure 6.15a 

the two conducting strips on the real axis remain there, and the negative charge at infin-

ity is mapped into the origin. Figure 6.15b illustrates the reverse effect. A ray from ∞ to 

B is transformed into a ray from B to the origin. Basically it is valid for all examples 

that the mapping sequence can also be reversed. Because the reciprocal function of the 

inversion is again the inversion, all mappings on the left side are created by inverting 

the mapping on the right side. Figure 6.15c illustrates, that a straight line BA , parallel 
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to one axis turns into a semi circle and Figure 6.15d is an example for the mirror image 

of a mapping in the unit circle. Figure 6.15e illustrates, that two straight lines starting in 

the same point, are transformed into a biangle. Their intersecting angle ϕ is preserved. 

Because the two straight lines intersect at the point ∞ with the same angle ϕ, the resul-

tant biangle is symmetric. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14: The Mapping z = 1/w1 
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Figure 6.15: Successive transformations with z = 1/w1 
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Figure 6.15: Successive transformations with z = 1/w1 

 

 

Example 8:  Field map I of a conducting strip against a circular cy- 

    linder  
 

As a vertical straight line, which does not coincide with a coordinate axis, is according 

to Figure 6.14 mapped onto a circle, the field map of a strip against a conducting plane 

(Mapping E 3) is used as initial mapping. 
 

( )w sn w k1 = , .  (42) 
 

This mapping is multiplied by a, in order to get a further parameter, and the conducting 

plane is displaced from the origin by 1 
 
w a w2 11= + ⋅ . (43) 
 

After the successive transformation 
 
w w3 21=  (44) 
 

the conducting plane goes over into a circle through the points 1 and 0; the strip main-

tains its shape. Only the length is altered. 

z

w1

K 1.8 F 2.5

A

B

B

ϕ

ϕ ϕ

e)

AB

Semi circle
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Hence the objective is achieved. Because of normalization reasons of the field maps in 

the table of mappings, the center point of the circle is moved into the origin and the ra-

dius is set to 1 

 

z w= −⎛
⎝⎜

⎞
⎠⎟

⋅3
1
2

2.  (45) 

 

The end points of the strips are thus found as (Figure 6.16d): 
 

− =
−

−⎛
⎝⎜

⎞
⎠⎟

=
+
−

b
a

a
a

1
1

1
2

2 1
1

 (46) 

 
 

− =
−

−
⎛
⎝
⎜

⎞
⎠
⎟ =

+
−

c
a k

a k
a k

1
1

1
2

2 1
1

 . (47) 

 

The equations (43) through (45) can be combined to 
 

1
1

1
2

2 1
11

1

1+
−

⎛
⎝
⎜

⎞
⎠
⎟ =

−
+a w

a w
a w

 . (48) 

 

Instead of the 3 single steps in Figure 6.16 it is as well possible to utilize directly a suc-

cessive transformation with this special case of the bilinear transformation. Equation 

(48) maps the imaginary axis onto the unit circle. The left half plane is transformed into 

the exterior and the right half plane into the interior of the unit circle. 
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Figure 6.16: Example 8, Mapping F 6.3 
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Example 9:  Field map II of a conducting strip against a circular cy- 

    linder  
 

In the case that the conducting strip is rotated by 90° (Figure 17d), a more suitable start-

ing point is Mapping F 3.1. 

 

( ) ( )

( ) ( )
w r K k

w j a

K k
w j a

1

4 2

4 2

= ⋅
+

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

−
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

ϑ

ϑ

π
τ

π
τ

,

,

 . (49) 

 

The field map is moved out of the origin by r  
 
w r w2 1= +  , (50) 
 

in order to achieve that the inner circular arc lies on a circle through the origin. With the 

successive transformation 
 
w w3 21=  , (51) 
 

this arc is mapped onto a vertical straight line, the conducting strip sought-after. The 

outer circular cylinder remains a circular cylinder (Circles are mapped onto circles). In 

order to standardize the mappings, the radius of the circle is normalized to 1 and the 

center is moved back into the origin. 
 
z r w= + 3 ρ . (52) 
 

With the successive transformation z w= 1 1  circles are indeed mapped onto circles, but 

concentric circles do not remain concentric. The common center w r2 =  of the two cir-

cular cylinders in Figure 17b is not preserved. The new center M of the outer circle has 

to be determined from the geometry of Figure 17c: 
 

ρ =
+

+
−

⎛
⎝⎜

⎞
⎠⎟

=
−

1
1

1
1

2 1
1 2r r r

 (53) 
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M
r

r
r

r=
−

+ = −
−

= − ⋅
1

1 1 2
ρ ρ . (54) 

 

The height b of the strip is found from 
 

( )
r

r r j1
1

=
+ ⋅ −exp ϕ

 (55) 

 

b r=
1

1
ρ

Im . (56) 

The distance from the center s follows with Eq. (52): 
 

s r
r

= +
1

2 ρ
. (57) 

 

Mapping F 6.6 is a modification of this mapping. As it is evident when examining Fig-

ure 6.17, a multiplication of the initial mapping in Figure 6.17a with ( )exp jβ  creates a 

displacement of the conducting strip in Figure 6.17d in vertical direction. For a positive 

angle β the circular arc electrode is rotated in mathematically positive sense. The con-

ducting strip moves downwards while the distance s and the location of the circular cyl-

inder remain unchanged. The geometry of the electrodes is therefore no longer symmet-

rical with respect to the real axis.  

 



6.   Successive Transformations 
_____________________________________________________________________________________  

Vs. 1.1 

31

z

w2

w3

F 6.5

a)

b)

c)

d)

1/(r-1) 1/(1+r)

w1

r=1

r=1

r

2r

1

1+r

ϕ

F 3.1

r exp(-j )ϕ

-1+r
r

1/(2r)

r1

ρ

M

r=1

b

s

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.17: Example 9, Mapping F 6.5 
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6.7 Transformation of Regions 
 
The preceding chapters have illustrated how a given mapping can be deliberately trans-

formed into another mapping by a successive transformation with an elementary func-

tion. Of course it is also possible to employ more complicated functions to solve a given 

mapping problem and also to execute several successive transformations consecutively. 

Another target oriented procedure in this context is, to transform a complete region in a 

given mapping into a differently shaped region. For this purpose Chapter 6.8 contains 

an assembly of frequently used transformations of regions. The procedure is illustrated 

with some examples. 

 

Example 10:  Vertical strip against horizontal strip 
 

In order to create the field map of a vertical strip against a horizontal strip (Figure 

6.10c), where all dimensions are arbitrarily selectable, Mapping E 3 is chosen as initial 

mapping 

( )w sn w k1 = ,  . (58) 

With the conversion  
 
w j a w2 1= ⋅ ⋅  (59) 

the field map of a vertical strip against a conducting plane is found. Now the upper half 

plane is mapped onto the exterior of a conducting strip with mapping of regions X 6 as 

successive transformation  
 

z
w
w

= −
+

2
1

2

2
2

 . (60) 

 

Due to the fact that in this mapping the imaginary axis is again mapped onto the imagi-

nary axis, the vertical strip is maintained. The conducting plane (the real axis) is folded 

up into a horizontal strip. 
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z

w1

w2

E 3 F 5.2a) b) c)

1/k1

A
B C

C

D

E

F

F

F

A
B C

D

E

d

c

h

1

 

The coordinates of the vertical strip are found by insertion of the points E and D in Eq. 
(60). Point E is moved from w j a2 =  onto ( )jh ja a= − −2 1 2 : 

 

h
a

a
=

−

2
12

. (61) 

 

Point D is moved from w j a k2 =  onto z jd=  with 
 

d
a k

a k
=

−

2
2 2

. (62) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.18: Example 10, Mapping F 5.2 
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Example 11:  Strip against rectangular cylinder 
 

With the mapping of regions X 12 a strip on the real axis between −1 and +1 can be 

transformed into a rectangle. Hence the field map is found with the result of the preced-

ing Example 10 
 

( )
( )

w
ja sn w k
a sn w k1 2 22

1
= −

−
,

,
 (63) 

 

and the successive transformation  
 

z B w
k

k jba=
⎛
⎝
⎜

⎞
⎠
⎟ +1

1
1 1,  . (64) 

 

The sides a1 and b1 are functions of the modulus k1  
 

( ) ( )a
E k k K k

k1
1 1

2
1

1
2=

− '
 (65) 

 
( ) ( )b

E k
k

K k1
1

1
2 1= −

'
'  . (66) 

 

The vertical strip on the imaginary axis is maintained. The new coordinates of the strip 

are determined by insertion of the corresponding two points 
 

h B j h
k

k ba1
1

1 1=
⎛
⎝
⎜

⎞
⎠
⎟ +Im ,  (67) 

 

d B j d
k

k ba1
1

1 1=
⎛
⎝
⎜

⎞
⎠
⎟ +Im , . (68) 

 

Like in the Examples 10 and 11 the mapping of regions as successive transformation 

opens the possibility to transform a specific region in a given field map into another re-

gion with different shape. In this way it is without any difficulty possible, to transform 

e.g. a strip into a circle or into an ellipse and the other way round to transform circles or 

ellipses into a strip. Nevertheless it has to be kept in mind that the remaining field map 
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zw1

a)    F 5.2 b)    F 7.1

F F

A A

B
B

C
C

D

D

E

Ed
d1

h
h1

1

a1

G

G

H

H

b1

AA

is transformed as well. In case the electrodes outside the mapped region are not located 

on symmetry planes, it is possible only in a few special cases to describe the shape of 

the transformed electrode configuration with simple analytical functions. One of those 

special cases is given in the following example. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.19: Example 11, Mapping F 7.1 

 

 

Example 12:  Strip and circular arc 
 

The mapping of regions X 6 used in Example 10 
 

z
w
w

= −
+

2
1

1

1
2

 (69) 

 

does not only fold up the real axis into a strip, but at the same time maps the upper half 

of the unit circle onto the real axis for x ≥ 1. 

 

If the initial field map is chosen according to Figure 6.20a, where the oblique strip is 

mirror imaged at the unit circle, then after the mapping of regions with Eq. (69) this 

strip is transformed into a circular arc and the unit circle becomes part of the real axis. 
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z

a)    E 5 b)     F 6≈

w1
A

B

1-1

A

B

1-1

h

1/h

The mirror image in the unit circle is transformed into the mirror image in the real axis. 

Hence point B in the z-plane is conjugate complex to point A (Figure 6.20b). 

 

 

 

 

 

 

 

 

 

 

Figure 6.20: Example 12, Mapping F 6 

 

 

Chapter 6.8 contains only some typical and commonly employed mappings of regions. 

Regarding the mapping of 
 

- the upper half plane, 

- a parallel strip, 

- a half strip or 

- a rectangle 
 

onto another region all other appropriate mappings from of the table of mappings may 

be used. 

 

If a complicated region I is to be mapped onto another region II, then a possible proce-

dure is the following: 
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w1

w2

A A

B

B

B

C

CD D

1/2

uC d

r=1

1. The transformation equations fI and fII , which have the regions I and II as result-

ing field map, are gathered from the table of mappings. 

 
2. Transformation equation f I  is inverted into f I

−1. 
 
3. Function f I

−1 is used as pre-transformation for the function f II . 

 

Example 13:  2 Circles onto 2 strips 
 

As an example for this procedure the region exterior to two circles of the same size shall 

be mapped onto the region exterior to two coplanar strips. Function f I  is found with 

Mapping E 1.1 
 

f I :               ( )w
r

w1
1

2
1

= tanh π  (70) 

with 

( )
r

uc
1

1
2

=
sinh π

 (71) 

and 

u ar dc = ⋅ −
1

2
12

π
sinh . (72) 

 

This function maps according to Figure 6.21 the interior of a rectangle onto the region 

between two circles of the same size. 

 

 

 

 

 

 

 

Figure 6.21: Function fI from Example 13, only the I. quadrant of the mapping is 

           shown 
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w3

z

A A

B

B

C

CD D

K'(k)

K(k) 1 1/k

The function f II is found with Mapping E 3 
 
f II  :                   ( )z sn w k= 3,  (73) 
 

and maps the interior of a rectangle onto the region exterior to two coplanar strips (Fig-

ure 6.22). 

 

 

 

 

 

 

Figure 6.22: Function fII from Example 13 

 

In Figure 6.23 the final result due to three successive mappings is illustrated. The in-

verse of f I  
 

fI
−1 :                     ( )w ar r w2 1 1

1
= ⋅

π
tanh  (74) 

 

maps the region exterior to two circles onto the interior of a rectangle. With the in-

between mapping 
 

( )w w
u

K k
c

3
2= ⋅  (75) 

with 
( )
( )

τ = =
K k
K k uc

' 1
2

 (76) 

and 
( ) ( )[ ]k = ϑ τ ϑ τ2 3

2
0 0, ,  (77) 

 

this rectangle is converted such that it is of the same shape as that, which belongs to the 

function f II . The complete mapping, from plane w 1 onto plane z is found by inserting 

the equations (73) through (75) into one another: 
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w3

z

A

A

B

B

B

C

C

D

D

K'(k)

K(k)

1 1/k

w1

w2

A

A

B

B

B

C

C

D

D

1/2

uC

d

r=1

( ) ( )z sn
K k
u

ar r w k
c

=
⋅

⋅ ⋅
⎡

⎣
⎢

⎤

⎦
⎥π

tanh , .1 1  (78) 

 

This function maps two circles of the same size onto two strips of the same size. The 

inverse function, which can be written down immediately, accordingly maps two strips 

onto two circles. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.23: Complete sequence of mappings for Example 13
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w

B

w

B

w
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D

C +1-1

E1

C

C

A

E

D

C

π

π/2
z

BBB D
1-1

A

z
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w

- /2π π/2

A
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6.8 Table of Transformations of Regions 
 

1. Upper half plane onto parallel strip 
 

z = ln w1 
 

 
 
 
 
 
 
 
 

2. Upper half plane onto half strip 
 

z = arcsin w1 
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w z

B B

C

C

D
D

A A

w

z

B
B

C

C
D

D
A

A

A

π

π/2

-1 1

 
3. Interior of rectangle onto the interior of a sector of an annu-

lus 
 

z = exp w 
 

 
 
 
 
 
 
 
 
 
 

4. Half strip onto interior of semi circle 
 

z = exp w 
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w
z

B B
C

C

D D
A A A-1 1-1 1

w z

B B
C

C

C

D

D

D
A A-1 1

-1

1

 
 

5. Upper half plane onto interior of semi circle 
 

2 1z w w= − −  
 

 
 
 
 
 
 
 
 
 
 

6. Upper half plane onto strip 
 

22
1

wz
w

= −
+

                                  Dipole at C in the z-plane 
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w z

11 -1A

B

B
B

C CA

w z

B C D

D

A

-b b
A

B

C

D

I
I

II

IIIII

III

IV

IV
1-1

ϕ

 
7. Upper half plane onto exterior of circle 

Lower half plane onto interior of circle 
 

w jz
w j
+

=
−

      1
tan( / 2)

b
ϕ

=  

 
 
 
 
 
 
 
 
 
 
 

8. Right half plane onto interior of circle (Smith-Diagram) 
 

1
1

wz
w
−

=
+
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w z

-1 1 1-1

w z

-1 11-1

w z

-1 11-1

b

 
9. Strip onto circle 

 
2 1z w w= + +   

 
 
 
 
 
 

10. Circle onto strip 
 

( )1 1/
2

z w w= +   

 
 
 
 
 
 
 

11. Circle onto ellipse 
 

1 1(1 )
2

bz w b
w
−⎧ ⎫= + +⎨ ⎬

⎩ ⎭
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w z

-a a1-1

b

-1/k
A DB C A B

C D

w z
π/2

- /2π

w z

11 -1-1
2ϕh

 
12. Strip onto rectangle 

 

,a
wz B k jb
k

⎛ ⎞= +⎜ ⎟
⎝ ⎠

  
2

2

( ) ' ( )E k k K ka
k
−

=     2

'( ) '( )E kb K k
k

= −  

 
 
 
 
 

13. Half straight line onto half strip 
 

( 1) arcsinz w w j w= − +   

 
 
 
 
 

14. Circle onto circular arc 
 

( )1 1
1 1/
2

z w w= +     1
sin

cos
w jw ϕ

ϕ
+

=   

h = tan ϕ     r = 1/sin (2ϕ) 
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w z1

1-1
ϕ

w z
1

1-1
ϕ

w z

π/2 cosh σ

σ   sinh σ

1

 
15. Circle onto rotated strip 

 
1 exp( 2 )
2

jz w
w

ϕ⎛ ⎞= +⎜ ⎟
⎝ ⎠

  

 
 
 
 
 
 
 

16. Rotated strip onto circle 
 

2 exp( 2 )z w w j ϕ= + −   

 
 
 
 
 
 
 

17. Interior of rectangle onto interior of ellipse 
 

z = sin w 
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w
z

1K(k)

K'(k)/2

1/sqr(k)
A

B

CDA

B C

D

w

z

1 K(k)

K'(k)/2

1/sqr(k)
A

B

CD A

B C

D

w z

1 1

b

 
18. Interior of rectangle onto interior of circle 

 

z = sn (w,k) 
 
 
 
 
 

19. Interior of circle onto interior of rectangle 
 

z = Fa (w,k) 
 
 
 
 
 
 

20. Interior of circle onto interior of ellipse 
 

21 sin ,
2 ( ) a

wz b F k
K k k
π⎧ ⎫⎛ ⎞= − ⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭
 

4 tanhar bτ
π

=     [ ]2
2 3(0, ) (0, )k ϑ τ ϑ τ=  
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w z

11

b

w z

1

1

1
A

AB

C B

C

 
21. Interior of ellipse onto interior of circle 

 

2

2 ( ) arcsin ,
1

K k wz k sn k
bπ

⎧ ⎫
= ⎨ ⎬

−⎩ ⎭
 

 
4 tanhar bτ
π

=     [ ]2
2 3(0, ) (0, )k ϑ τ ϑ τ=  

 
 
 
 
 
 
 
 
 

22. Interior of quarter circle onto interior of triangle 
 

2

2

1 2 1,
( ) 1 2a

wz F k mit k
K k w

⎛ ⎞
= =⎜ ⎟⎜ ⎟+⎝ ⎠
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w z

11

11

A

A

BB

CC DD
sr

w
z

AA BB CC D

r=1

1 r2

E
h

h1

h2

r1

DE1/a

 
23. Interior of annulus onto interior of circle with strip 

 
ln( ) '( ) ,

ln
wz ksn K k K k k mit

r
πτ

π
⎡ ⎤= + = −⎢ ⎥⎣ ⎦

 

[ ]2
2 3(0, ) (0, )k ϑ τ ϑ τ=       s k=  

 
 
 
 
 
 
 
 

24. Annulus onto the region exterior to two circles 
 

1
w az
aw
−

=
−

 

 
( )( )2 2

1 2 1 2

1 2

1 1 1h h h h
a

h h

+ + − −
=

+
   

2

2 1 2 2
1

1
1

ar r
a r
−

=
−

 

( ) ( )2 2
1 2 1 2

1
1 2

1 1 1h h h h
r

h h

− − − −
=

−
   

2
1
2 2

1

1
1

rh a
a r

−
=

−
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w z

A AB BC C D

r=1

1 r2

E
h

h1

h2

r1

D E1/a

w z

A AB BC CD D

r=r1 r=1

h1

h2

r1

1

1-1

 
25. Region exterior to two circles onto annulus 

 

1
w az
aw
−

=
−

 

 

( )( )2 2
1 2 1 2

1 2

1 1 1h h h h
a

h h

+ + − −
=

+
   

2

2 1 2 2
1

1
1

ar r
a r
−

=
−

 

( ) ( )2 2
1 2 1 2

1
1 2

1 1 1h h h h
r

h h

− − − −
=

−
   

2
1
2 2

1

1
1

rh a
a r

−
=

−
 

 
 
 
 
 
 
 
 

26. Annulus onto excentric annulus 
 

1
w az
aw
−

=
−

 

 

( )( )2 2
1 2 1 2

1 2

1 1 1h h h h
a

h h

+ + − −
=

+
  ( ) ( )2 2

1 2 1 2
1

1 2

1 1 1h h h h
r

h h

− + + − −
=

−
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z

A B

B

CD
1 1/k

w

A

B

BCD
d

r=1

 
27. Two circles onto two strips 

 
( ) ( )1tanh , .

c

K k
z sn ar r w k

u π
⎡ ⎤

= ⋅ ⋅⎢ ⎥⋅⎣ ⎦
 

 
( ) ( ) 2

2 30, 0,k ϑ τ ϑ τ= ⎡ ⎤⎣ ⎦  
'( ) 1
( ) 2 c

K k
K k u

τ = =  

( )1
1

sinh 2 c

r
uπ

=  

21 sinh 1
2cu ar d
π

= ⋅ −  
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z

A B

B

CD
1 1/k

w

A

B

BCD
d

r=1

 
28. Two strips onto two circles 

 

1

1 tanh ( , )
( )
C

a
uz F w k

r K k
π⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

 
 

 

( )1
1

sinh 2 c

r
uπ

=  

21 sinh 1
2cu ar d
π

= ⋅ −  
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w
z

B

B

C CD D
A

A

A

K(k)-1

K'(k)

-1/k

w
z

A A

B

B

C

CD D
r1

r=1

-e

0,5

uA uD

 
29. Interior of rectangle onto excentric annulus (F 1.1) 

 
2tanh( ) 1z a w aπ= − +    ( )22 2 2

1 11 / 4a r e r e= + − −  

 
1 sinh

2au ar a
π

=     ( )1
1 sinh /

2Du ar a r
π

=  

 
 
 
 
 
 
 
 
 

30. Upper half plane onto interior of rectangle 
 

( , )az F w k=  
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z

AA
B

C

D

III

III IV

1-1A
B

C

D
III

III IV
1-1

w

z

AA
B

C

D

III

III IV

1-1 A
B

C

D

III

III IV
1-1

w

31. Interior of circle onto exterior of circle (Q 1) 
 

z = 1/w 
     

 
 
 
 
 
 
 
 
 

32. Exterior of circle onto interior of circle (Q 1) 
 

z = 1/w 
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7. Superposition of Fields 

 
When the superposition of two fields in the z-plane takes place 

 

  z = f1(w) + f2(w)       (1) 

 

two complex numbers f1 and f2 or two vectors 1f
r

and 2f
r

respectively are added in every 

point P(x,y). As a field is well-defined by its electrodes or more general by its boundary 

conditions, it is sufficient, to constrain the analysis to these boundaries. The superposi-

tion of fields in the z-plane is a method, where several known field maps are combined 

in such a way that the result is a field with the new boundary that was sought after. 

 

Example 1: Creating a Circle or an Ellipse 
 

If a uniform field f2(w) = w (Figure 7.1) is added to the field of a half plane with a sali-

ent edge (Mapping A 2.1) 

 

  2
1f ( ) 1w w= + ,       (2) 

 

then along the boundary with increasing u, starting at -∞, there is at first an interval be-

tween point A and B, where both functions run into the same direction along the real 

axis (Figure 7.1, right side, z-plane). Therefore their sum also remains on the negative 

real axis. In the interval between point B and C the function  f1(w) runs vertically up-

wards and  f2(w) continues horizontally: Hence the sum of both functions is a circular 

arc pointing upwards. Between point C and D this circular arc goes downwards again. 

From point D until point E at +∞ the sum is once again the same straight line along the 

positive real axis. 
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Figure 7.1: Example 1 – Creating a semi circle 
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For a point between C and D, the two radius vectors of the complex numbers are plotted 

in Figure 7.1, f1(w) in black and f2(w) in red. Their sum is a point f1(w) + f2(w), which 

lies on the circular arc. 

 

The complete transformation equation is (Mapping A 3): 

 

  2 1z w w= + −        (3) 

 

The proof that this curve is an exact circle, can be provided e.g. as follows: 

 

Curve CD :  w = u with u < 1 ⇒  2 1x jy u u+ = + −   (4) 

  x u=      21y u= −    (5) 

  2 2 1x y+ =   (equation of a circle).    (6) 

 

If f1(w) is multiplied with b, in order to achieve that the edge has no longer the height 1, 

but the height b, then the field map after the superposition contains an ellipse (Mapping 

A 3.2) instead of the circle, with the vertical semi-minor b and the horizontal semi-

major 1: 

  2 1z w b w= + −        (7) 

 

Example 2: Conversion Edge into Half Strip 
 

If from the field of Mapping A 8 

  2
1f ( ) 1w w w= −        (8) 

 

the interior of a half strip (Mapping A 7) is subtracted 

 

  f2(w)= arcosh (w) -j π/2,       (9) 

 

then this yields Mapping A 5. (Figure 7.2): 
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b) - f (w)2

c) f (w) - f (w)1 2

d)  f (w) - f (w)σ 1 2 e)  f (w) - f (w)σ 1 2

a) f (w)1

f1

f1

-f2

-f2

A

A

C

C

D

D

1

1

w

w

A C

B
z

B

B

1/sqr(2)
D

½

A

A

B

B

C

C

z

z

π/2

π/2

A
B C

w

1

D

Df f1 2- 

A

BC

z

π/2

h

D

D

A

B

C

z

π/2

h

D

  2
1 2z f (w) f (w) w w 1 ar cosh w j

2
π

= − = − − + .   (10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2: Example 2
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In order to illustrate the procedure, f1(w) is shown in Figure 7.2a and - f2(w) in Figure 

7.2b. Figure 7.2c shows the sum  f1(w) + {- f2(w)}. From point A to point C both curves 

run vertical on the imaginary axis, hence also the sum yields values lying on the imagi-

nary axis. In the interval between point C and D both curves run horizontally, displaced 

against each other by jπ/2. Because the real part of f1(w) is always bigger than the mag-

nitude of the real part of  f2(w), the sum lies always on the straight line x + jπ/2 in the I. 

quadrant. 

 

If this relationship of the magnitudes is changed by a factor σ < 1 for f2(w), then the 

sum lies in a certain interval in the II. quadrant and this leads to Mapping A 5.3 (Figure 

7.2d). 

 

  2
1 2z f f w w 1 ar cosh w j

2
π

= σ − = σ − − +     (11) 

 

For σ > 1 the vertical boundary in the interval A-C swings higher up than π/2 and af-

terwards down again to π/2 (Mapping A 5.4 , Figure 7.2e). 

 

 

Example 3: Bent Channel with Right Angle 
 

The function 

 

  1 1 1 2

exp( ) 1f ( ) 2 tanh with
exp( )

ww a ar w w
w a
π
π

−
= =

+
   (12) 

 

yields the field map of a line charge at point A in a half strip, which points to the right 

(Mapping H 2.3). The function 

 

  2 1f ( ) 2 arctan ( )w aw= −       (13) 
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yields the field map of a line charge at point C in a half strip, which points upwards. 

The sum of both transformation equations z = f1(w) + f2(w) yields the field map of a 

bent channel with a right angle (Mapping D 4). 

 

As can be seen in Figure 7.3 f1(w) and f2(w) run from point A to point B vertically on 

the imaginary axis. The sum f1(w) + f2(w) is therefore the right vertical boundary of the 

channel. Point A of f2(w) remains unchanged at +j∞. From B to C both functions run on 

the real axis. The sum yields the upper horizontal boundary of the channel. 

 

Likewise the lines from D to E produce the left vertical boundary of the channel and the 

lines from E to F the lower horizontal boundary of the channel. The line charges in the 

points A = D and C = F are mapped to ∞. They are the reason, why the streamlines in 

the channel flow from one end to the other. Both branches of the channel have the same 

width for a = 1. 

 

With the same method the Mappings H 10, C 5, C 5.1 and C 5.2 were found. 

 

Example 4:  Superposition of the same Function, Dis-

placed by ∆ 
The function 

 

  f ( ) ( , )ew Z w k ja= +        (14) 

 

maps a rectangle onto a conducting strip, parallel to an infinite conducting plane (Map-

ping E 2, Figure 7.4). With the transformation 

 

  f ( ) f ( ) f ( )w w w= + ∆ + − ∆       (15) 

and ∆ = jσ this turns into 

 

  ( , ) ( , )e ez Z w j k Z w j kσ σ= + + − .     (16)
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Figure 7.3: Example 3, Mapping D 4 

 



7.   Superposition of Fields 
_____________________________________________________________________________________  

Vs. 1.1 

8

 

Due to the displacement by jσ in the uniform field of the w-plane, the bottom line, the 

infinite potential line DE in the z-plane in Figure 7.4 is omitted. Because of the ±∆-

transformation the curvilinear finite potential line, which is displaced by jσ, is mapped 

onto a straight line parallel to the real axis (+jσ - jσ = 0, the imaginary parts of the two 

functions cancel each other). The result is the field map of two parallel conducting 

strips with different width (Mapping F 5, Figure 7.5) and the distance 2a. With the same 

method, amongst others, the Mappings P 4.2 and P 4.3 were produced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4: Mapping E 2 
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Figure 7.5: Example 4, Mapping F 5 

 

 

Example 5:  Inserting a Gap into a Boundary 
 

The Mapping P 7.3: 

 

a 1 a 2z B (w ,k) jB (w ,k) h jh= + − −  = f1(w) + f2(w)      (17) 

1 0w 1 w= +           (18) 

2 0w 1 1/ w= +      0w cosh(w )= π    (19) 

k = 1/sqr(2)      h = 2E(k) - K(k)   (20) 
 

is produced by addition of the two functions f1(w) and f2(w). As illustrated in Figure 

7.6, both functions f(w) have similarity with a sector of 1/8 of the outside field of a 

z
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quadratic electrode (Special case of Mapping B 4, but with a different pre-

transformation). The field map has a circumferential closed boundary from point A to 

point E with a single pole. Both boundaries are equal and have the same dimensions. 

Only the sense of circulation and their position in the z-plane are different. In Figure 7.6 

are shown: 

 

1 a 1f (w) B (w ,k) h / 2 jh / 2= − −      (21) 

and 

  2 a 2f (w) jB (w ,k) h / 2 jh / 2= − −      (22) 

 

When the superposition f1(w) + f2(w) takes place, the radius vectors ending on the dark 

blue colored boundary from C to A are added, and the curve of the sum f(w) begins, be-

cause of C1 = h/2 (1+j) and C2 = ∞, inclined by 45°, in the infinite point at C. Thereafter 

it runs along the 45°-straight line in the direction of the origin. Because f1 is always in-

creasing and f2 is constantly decreasing, the sum never reaches the origin. In point B the 

movement comes to a standstill and afterwards the sum reverses the direction. Point B is 

located at d (1+j) with d > h. Because of A2 = h/2 (1+j) and A1 = ∞ the curve ends in 

Point A again inclined by 45° in the infinite point. Thus the boundary, which is closed 

in both individual functions, is opened between B and D in the case of the sum function. 

 

Point D1 is at h/2 (1-j) and point D2 is at h/2 (-1+j). Therefore the sum lies in the origin. 

The sum of all radius vectors, whose end points are located on the pale blue horizontal 

straight line, lies on the real axis in the z-plane. The vertical offset by ± jh/2 is mutually 

canceled. 

 

In the same way the points on the two red straight lines DC add to sum points on the 

imaginary axis of the z-plane. The offset by ± h/2 is mutually canceled. The direction of 

movement along the straight lines DE and DC is the same for both functions; hence the-

re is no change of direction in this case. The positive real axis and the positive imagi-

nary axis are occupied continuously. 

 

The transformation of the same boundaries, as used above, can also be done without el-

liptic functions (Mapping D 2.5 with α = 90°, β = 45° and modified pre-transformation).
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Figure 7.6: Example 5 
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8. Electrodes in a Uniform Field 

 
8.1  Vertical Incidence of the Uniform Field 

 
Figure 8.1 illustrates with the example of a circular cylinder the difference between the 

field of an electrode against the infinite point (Figure 8.1a) and the field of an electrode 

in a uniform field or in a uniform flow (Figure 8.1b). In the first case there is a line 

charge at the point z = ∞. In the second case there is a line dipole at ∞. This line dipole 

can be visualized as two separate line charges: The uniform field is created from a posi-

tive line charge at  y  =  + ∞  and a negative line charge at  y  =  − ∞. 

 

The existence of a uniform field in the z-plane will be indicated with the vector of the 

electric field strength 
r
E . The arrowhead points in the direction of the field lines (flux 

lines, stream lines). The vector of 
r
E is perpendicular to the potential lines. The field 

maps of electrodes in a uniform field are comprised in the group of mappings R. In ad-

dition many other mappings of other groups (e.g. A, D, C ...) belong to this family. 

Most of these are supplemented in Chapter 15 R. As illustrated in Figure 8.2, e.g. Map-

ping A 10.2 yields, when complemented symmetrically, the field map of a rectangular 

cylinder in a uniform field. In Figure 8.2b the real axis is (outside of the rectangle) a po-

tential line due to the symmetry of the configuration. In Figure 8.2a this line is inter-

preted as a conducting surface. 

 

Fields with two infinite electrodes of opposite charge can be converted into those with a 

uniform field, by placing a line dipole in the point ∞ with an appropriate pre-

transformation. 
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Figure 8.1a: Circular cylinder charged against ∞ (B 1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.1b: Conducting circular cylinder in a uniform field (A 3) 
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Figure 8.2: An infinite electrode a) and a conducting rectangular cylinder in a uniform 

field b) have the same transformation equation (A 10.2)

z

E
→

z

a)

b)
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Example 1:  Two coplanar plates in uniform field (Conducting plane with slot) 

 

The field map of two coplanar plates on the real axis with equal and opposite charge is 

given by mapping C 3. According to Figure 8.3a the uniform field between the plates 

FED  and ABC  in the w-plane is transformed by the function 

  

  ( )z w= cosh π  (1) 

onto the region between the two coplanar plates. In order to create a uniform field on 

top of these two plates, as depicted in the z-plane in Figure 8.3b, a positive line charge 

in point D and a negative line charge in point C must be created by an appropriate pre-

transformation. This implies for the w1-plane that a line dipole must be at u 1 = + ∞ , at 

the right end of the parallel strip. Furthermore both boundaries of the parallel strip must 

be potential lines and must have the same potential. These conditions are satisfied by 

Mapping H 1 (Figure 8.3c): 

  ( )w n w1 = l π  (2) 

Both mappings combined together with 

 

  ( ) ( ) ( )[ ]cosh exp expw w wπ π π= + −
1
2

 (3) 

 

leads to ( )z w w= +
1
2

1  (4) 

the field map of a uniform field, which is confined by a conducting plane with slot 

(Mapping R 4). If the sign of the pre-transformation in Eq. (2) is changed  

  ( )w n w1 = − l π ,  (5) 

the line dipole moves to the left end of the parallel strip, into the points F and A. Now 

the uniform field is below the two plates. Because the two electrodes in this example are 

symmetrical on the real axis, the same field map is produced. In those cases, where no 

symmetry exists, it is possible in this way to exchange the region with the uniform field 

and the region with zero field (e.g. Mapping R 4.2). 
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Figure 8.3: Example 1
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The method introduced in the example above can be applied to all mappings of the 

groups C and D. These mappings were not included in the table of mappings. Group R 

contains only some typical examples. 

 

 

8.2  Oblique Incidence of the Uniform Field 

 
In Example 4.3 the field map of a conducting circular cylinder in a uniform field was 

derived from the superposition of a uniform field and the field of a line dipole. The su-

perposition was done in the plane of the complex potential: 

  w z z= + 1 . (6) 

From this the transformation equation was found: 

  z w w= + −2 1 . (7) 

If in the same manner the potential of a uniform field, which is rotated by the angle ϕ 

(Table 3.1),  

  ( )w z j1 = ⋅ −exp ϕ  (8) 

and the potential of a line dipole, which is rotated by the angle ϕ  

  ( )w
z

j2
1

= ⋅ exp ϕ  (9) 

are added ( ) ( )w w w z j
z

j= + = ⋅ − + ⋅1 2
1

exp expϕ ϕ , (10) 

then this yields the transformation equation 

  ( )2 1 ,jz e w wϕ= + −  (11) 

the field map of a circular cylinder in a uniform field, which is rotated by the angle ϕ in 

the direction of the imaginary axis (Figure 8.4a). The solution seems to be trivial at first 

sight, because from experience as well as from the derived function follows that the 

field map of a circular cylinder in a uniform field always remains the same, irrespective 

of the fact, that the direction of the incident field is changed, or that, at constant angle of 

incidence, the circular cylinder is rotated. 
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Nevertheless the derived equation is very useful, if it is considered that according to 

Chapter 7 it is easily accomplished, to map a circular cylinder onto a strip, onto a rec-

tangle, onto an ellipse or onto an arbitrary biangle (region with circular arc sides and 

two corners). All these mapping problems are solved with this equation (Group of map-

pings R 3). The following example explains the procedure. 

 

Example 2: Strip in uniform field with oblique incidence. 

 

The field map of a circular cylinder in a uniform field with oblique incidence is (Eq. 

(11)): 

  ( )2
1 1 .jw e w wϕ= + −  (12) 

A circle is mapped onto a strip with the successive transformation X 10 

 

  ( )z w w= +
1
2

11 1 . (13) 

Furthermore the circle must have the radius 1 and must be concentric to the origin. Both 

conditions are already satisfied by Eq. (12). Thus the successive transformation can be 

employed directly, without any other transformation in-between. Hence the field map 

sought-after in the z-plane is found (Figure 8.4b). 

 

If Equation (12) is inserted into Equation (13), the solution can be written, with the rela-

tion 

 

  
1

1
1

2

2

w w
w w

+ −
= − −  (14) 

 

as 

  z w j w= ⋅ + − ⋅cos sinϕ ϕ2 1 . (15) 
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Figure 8.4: Example 2, conducting strip in a uniform field with oblique incidence 
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8.3  Airfoil Profiles 

 
In the fields of aerodynamics and hydrodynamics it is possible to determine physical 

parameters like e.g. velocity, pressure and uplift for a certain cross section, which is in a 

laminar flow, with the help of conformal mapping [29, 30]. The medium, in which the 

body to be analyzed is submerged, is assumed to be approximately inviscid and incom-

pressible. As an example for cross sections, which are analytically solvable in such po-

tential flows, the transformation equations for Joukowski profiles [3] and for Kármán-

Trefftz profiles [3] are derived in the following. 

 

Example 3:  Joukowski profiles 

 

The mapping is based on a circular arc in a uniform flow with oblique incidence. As il-

lustrated in Figure 8.5, the starting point is a circle in a uniform flow with oblique inci-

dence 

  ( )2
1 1jw e w wα= + −  (16) 

and this circle is mapped onto a circular arc with equation X 14 of the transformation of 

domains. 

 

1. Step: w
w j

2
1=
+ sin
cos

ϕ

ϕ
 (17) 

2. Step: ( )z w w= +
1
2

12 2 . (18) 

 

In the general case that not the unit circle, like in Figure 8.6a, but a slightly bigger circle 

is transformed, a region with a curvilinear boundary is created in the z-plane, which co-

vers the former circular arc completely. In the special case, where the slightly bigger 

circle in the w2 -plane touches the unit circle in a single point and where the center point 

is not on the real axis, the created region in the z-plane is termed Joukowski profile. 

 

Mathematically the slightly bigger circle is created by an additional mapping:



8.   Electrodes in a Uniform Field 
_____________________________________________________________________________________  

Vs. 1.1 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.5: Circular arc in uniform flow with oblique incidence (R 3.1)
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The starting point is again the unit circle in a uniform flow with oblique incidence 

 

  ( )2
1 1jw e w wα= + − . (19) 

This circle is magnified by the factor r > 1 i.e. ( )r w⋅ 1 , then this bigger circle is moved 

back to the unit circle ( )( )r w r⋅ − −1 1 , moved away from the unit circle by the dis-

tance b ( )( )r w r b⋅ − − +1 1  and finally rotated by the angle −β (Figure 8.6b). 

 

  ( )[ ]w e r w r bj
2 1 1= − − +− β . (20) 

After this the unit circle (in Figure 8.6b and c plotted in black) is mapped onto a circular 

arc and this procedure at the same time transforms the bigger circle (red) into a univer-

sal airfoil profile. 

 

1. Step: w
w j

3
2=
+ sin
cos

ϕ

ϕ
 (21) 

2. Step: ( )z w w= +
1
2

13 3 . (22) 

 

In the special case b = 0, a Joukowski profile is created. It has a sharp edge at the right 

end. Figure 8.8a shows an example for the complete stationary flow field. The tangent 

to this edge has the same angle ϕ1 as the tangent to the circular arc (Figure 8.5b). For 

b = r-1 the profiles are symmetrical to the imaginary axis; for β = 0 the profiles are 

symmetrical to the real axis. The shape of the profile can be systematically modified by 

adjustment of the parameters r, b and β. Further classes of profiles are generated, by 

modifying the transformation, e.g. in such a way that the rotation by the angle β is not 

like in Eq. (20) around the origin of the w2 – plane, but instead around an arbitrary cho-

sen different point. 

 

If α is given a value between 0 and 2π the angle of incidence γ can be arbitrarily cho-

sen. 
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Figure 8.6: Airfoil profile, Example 3 (R 7.1) 
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Example 4:  Kármán-Trefftz profiles 

 

Another class of airfoil profiles is found, if the domain transformation used is not from 

circle onto circular arc, but from circle onto circular arc biangle. For b = 0 the cross sec-

tions created in the z-plane are termed Kármán-Trefftz profiles. The transformation 

equation for this case is (Figure 8.7): 

 

  ( )2
1 1jw e w wα= + −  (23) 

 

  ( )[ ]w e r w r bj
2 1 1= − − +− β  (24) 

 

  w a jb
w
w3

2

2

1
1

= −
+

−
 (26) 

 

  ( )2 12 2
4 3

jw e w δ π δ πδ − += ⋅  (26) 

 

  z
w
w

=
+

−

1
1

4

4

 (27) 

 

with   a = cosϕ  (28) 

  b = sinϕ  (29) 

and   ϕ
π δ
δ

π

δ

π

=
−

− +

2

2

2

2 1

 . (30) 

 

Figure 8.8b illustrates a flow map of this type of profile with b = 0,15. 

 

The profiles of Example 3 are special cases of this profile: For ϑ ϑ1 2=  the circular arc 

biangle fades into a circular arc.  
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Figure 8.7: Airfoil profile, Example 4 (R 7.2) 
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Figure 8.8: a) Flow map with Joukowski profile (R 7) 

  b) Flow map of the profile in Example 4 with b = 0,15 (R 7.2) 

a)

b)
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9. Rounded Corners 

 
9.1 Neighboring Field Line 

 
A simple procedure for rounding a corner of a given mapping with angled boundaries is 

illustrated in Figure 1. Instead of the boundary line v = 0  another equipotential 

line v v= 1  is used as new boundary, which lies a little bit more inside, within the region 

of the field. This procedure has been used already in Example 8.3, when the airfoil was 

mapped. There the unit circle was mapped onto an area between two circular arcs with 

two sharp corners, and a bigger, adjacent circle that nevertheless did nowhere touch the 

unit circle, was mapped onto the airfoil, without any corners. As shown in Figure 9.1, 

the complete boundary changes its position when this method is used, to round a corner. 

Furthermore the effect is much more pronounced with inside corners (point D) than 

with outside corners or salient angles respectively (point B). Technically interesting is 

in general the rounding of outside corners, because there e.g. in the case of the 

electrostatic field, the electric field strength reaches infinite values, at least in the 

mathematical model. 
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Figure 9.1: Rounding of a corner by omitting the border line v = 0 and using an 

        adjacent potential line v = v1 as new boundary (A 6) 
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9.2 Rounding of Corners by Superposition of Partly 
Differing Boundaries 

 
 

If to a field ( )f w1 , whose boundary line runs with increasing w, e.g. vertically, a 

second field ( )f w2 , whose boundary line runs perpendicular to the other one, also with 

increasing w, hence in this case horizontally, is added, then this yields in the field map 

of the function 

( ) ( ) ( )f w f w f w= +1 2  (1) 

 

in general a curved boundary as new border line (The addition of two complex numbers 

in the complex plane equals the addition of two vectors in the two-dimensional plane). 

 

Example 1: Conducting plane with semi circle convexity  

      (Conducting circular cylinder in uniform field). 
 

According to Figure 9.2a the boundary line of the function runs 

 

 ( ) 2
1f w = w -1  (2) 

 

from A to B in vertical direction, when u runs from 0 to 1 in the w-plane. The boundary 

line (v = 0) of the function 

 

 ( )f w w2 =  (3) 

 

runs according to Figure 9.2b with increasing u in horizontal direction. If both are added 

 

( ) ( ) ( )f w f w f w w w= + = + −1 2
2 1 ,  (4) 
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then every point of the new boundary curve, as illustrated in Figure 9.2c, is found as the 

sum of the two complex numbers ( )f w1  and ( )f w2 . The starting point A lies at 

j j+ =0 , the end point B lies at 0 1 1+ = and all points in between create a curve, which 

is bent to the right. It is easily proven that in this case the curvilinear line is an exact 

semi circle with x y2 2 1+ = . In the interval between point B and point C both 

boundary lines have the same direction, they run vertically, with increasing u to the 

right. Thus the superposition yields the same curve there. 

 

By the superposition of two field maps, whose boundaries are orthogonal to each other 

in a certain interval (between A and B) and whose boundaries are parallel aligned 

outside of this interval (between B and C), it is achieved in this example that a sharp 

blade, which extends into the upper half plane (f1(w), A 2.1) is converted into a semi 

circle (A 3). This procedure can be used systematically, to convert given field maps 

with sharp corners into field maps with rounded boundaries. 
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Figure 9.2: Example 1, details of the method used in Mapping A 3
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Example 2:  Rounded rectangle 
 

In Figure 9.3a the contour of the boundary is a rectangle. If another boundary is added 

to this, which runs vertical in the complete interval from A through B to C, then the sum 

of the two curves is between A and B a curvilinear boundary and between B and C a 

vertical straight line. 

 

Rectangle: ( )
( )

f w B
w

k
k jba1 =

⎛

⎝
⎜

⎞

⎠
⎟ +

sin
,

π
 (5) 

 

Vertical strip: ( ) ( )f w j w2 = ⋅σ πcos  (6) 

 

Sum: 
( )

( )z B
w

k
k jb j wa=

⎛

⎝
⎜

⎞

⎠
⎟ + + ⋅

sin
, cos .

π
σ π  (7) 

 

In point A there is a horizontal tangent. In point B the contour of the boundary is 

discontinuous. Point B is at u kB =
1
π

arcsin .  There ( )f w1  has the value a + jb and 

( )f w2  has the value j k j kσ σ1 2− = ' .  Hence point B of the sum function is at 

( )j b k+ σ ' .  The contour of the boundary is approximately circular for 

  

 ( )σ 1− =k a' ,  (8) 

 

which is evident, when looking at Figure 9.3c. Further examples for rounding one side 

of a rectangle or of a half strip with the same procedure are the Mappings M 1, M 1.1 

and M 3. 

 

Instead of superposing two different field maps, like in the example above, it is also 

possible to superpose two similar field maps. Mapping 1 differs from mapping 2 in such 

a way that the outside corner, which is to be rounded, is displaced for a certain amount 

in the w-plane.
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Figure 9.3: Example 2
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Example 3: Rounded outside corner 
 

The easiest case for the application of this procedure is the single corner 

 z w= ϕ π .  (9) 

The vertex lies in the w-plane at w = 0. If this point is moved for ( )f w1 to w a= +  and 

for ( )f w2  to w a= −  

 ( ) ( )f w w a1 = − ϕ π  (10) 

 

 ( ) ( )f w w a2 = + ϕ π ,  (11) 

then the sum of both functions contains in the interval between point B and point C in 

Figure 9.4c the superposition of a vertical boundary, function f1(w), and a horizontal 

boundary, function f2(w). The result is a rounded corner.  

 ( ) ( ) ( )f w f w f w= +1 2  (12) 

By insertion the location of point C is found: 

 ( )b a= 2 ϕ π .  (13) 

Further examples for the application of this procedure are the Mappings M 2 and M 2.1. 

In Figure 9.5 the basic principle of this procedure is illustrated. Both transformations 

( )f w1  and ( )f w2  create the same boundary with a corner. The outside corner, which 

is to be rounded, in Figure 9.5 at point D, is in ( )f w1  slightly displaced compared to 

( )f w2 . All other vertices are in the w-plane at the same locations. The superposition of 

both fields then yields a rounded corner in point D. The shape and the extension of the 

rounded contour can be controlled by the choice of the distance ∆u between the two 

points. Furthermore it is possible to influence the shape by repeated employment of this 

procedure, i.e. by multiple, weighted superpositions. 

 

( ) ( ) ( ) ( )f w f w g f w g f w= + ⋅ + ⋅ +1 2 2 3 3 ...  (14) 

 

With the superposition of field maps it is also possible to create rounded inside corners.
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Figure 9.4: Example 3
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Example 4:   Rounded inside corner 

 
Analogously to Example 3 the function 

 

 ( ) ( )f w w a1
1= + +ϕ π  (15) 

 

and the function 

 ( ) ( )f w w a2
1= − − +ϕ π   (16) 

 

are added to yield the function 

 

( ) ( ) ( ) ( ) ( )f w f w f w w a w a= + = + − −+ +
1 2

1 1ϕ π ϕ π  (17) 

 

Along the straight lines AB  and CD  the two different boundaries run into opposite 

directions (Figure 9.5). The function with the biggest magnitude dominates. The result 

is again a straight line. Between the points B and C the two functions run into different 

directions and the result is a curvilinear boundary, the rounded inside corner. 
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Figure 9.5: Example 4, rounded inside corner, (Mapping M 2.3) 
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9.3 Rounding of Outside Corners with the Schwarz- 

 Christoffel Transformation 

 
In the preceding chapter a method to create rounded outside corners has been 

introduced, where two transformation equations are added. The corner, which is to be 

modified, lies for each of these transformation equations at a different point of the real 

axis in the w-plane (Figure 9.5). Each transformation equation alone yields an outside 

corner at point D. The sum of both functions yields a rounded outside corner, where the 

curved boundary, whose shape is not mathematically defined, starts at D1 and ends at 

D2. 

 

In the Schwarz-Christoffel formula, Eq. (4.15), an outside corner is described by the 

term 

 
( )

1

w u i
i− α π

 (18) 

 

with αi <  0. For i = D, according to Figure 9.5, it can be written 
 

 
( )

1

w u D
D− α π

 (19) 

The two functions for the superposition result from the Schwarz-Christoffel formula 

with the term 

( )
1

1w u D
D− α π

  for ( )f w1  (20) 

and 
( )

1

2w u D
D− α π

  for ( )f w2  (21) 

The arc length of the curved line is controlled by the distance ∆u from uD1 to uD2. The 

shape of the curve is furthermore influenced by the weighting factor g2 in the addition. 

 ( ) ( ) ( )f w f w g f w= + ⋅1 2 2  (22) 
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Figure 9.6: Allocation of the vertices of f1(w) and f2(w) in the w-plane 

 

 

Example 5:  Mapping M 4, rounding of the corner in Mapping C 1 [10] 
 

With the method for the mapping of regions with polygonal boundaries, the following 

integral is found for the polygon in Figure 9.7  

 z
w b

w
d w

w

=
−

∫ 1 1

10

1

1

 (23) 

with the solution 

 z w b b
w b

b
= − − ⋅

−
2 21 1 1

1

1

arctan .  (24) 

In order to have different potential on both electrodes AC the pre-transformation 

 

 ( )w w1 = exp π   (25) 

has to be used.
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Figure 9.7: Mapping C 1 for Example 5 
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In order to get a rounded corner in point D1, to this function 

 

( )f w w b b
w b

b1 1 1 1 1
1 1

1

2 2= − − ⋅
−

arctan  (26) 

another function 

( )f w w b b
w b

b2 1 1 2 2
1 2

2

2 2= − − ⋅
−

arctan ,  (27) 

multiplied with the weighting factor λ, is added. 

 

( ) ( ) ( )f w f w f w1 1 1 2 1= + ⋅λ .  (28) 

 

The function ( )f w1 1  has an outside corner at D1; ( )f w2 1 has an outside corner at D2. 

For ∆ u 1 0≠ , with 

∆ u b b1 1 2= − ,  (29) 

 

the weighted addition of both functions yields a rounded corner. The smaller ∆ u 1 , the 

smaller the radius of curvature. For b1 = b2 the original, sharp angled corner is restored. 

For b1 = 1 - ∆ u 1 /2 and b2 = 1 + ∆ u 1 /2 point D1 is moved downwards in the z-plane for 

λ > 1. For  λ < 1 point D2 is moved to the right. 

 

To normalize the mapping to the width 1 and to move point B into the origin of the z-

plane (Figure 9.8) Eq. (28) is modified to  

 

 ( )
( )

( ) ( ){ }f w
b b

f w f w1

1 2

1 1 2 1
1

1=
+

+ ⋅ +
π λ

λ .  (30) 

 

Mapping M 4.1 is a further example for this method of creating a rounded outside 

corner. 
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Figure 9.8: Example 5, Mapping M 4
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9.4 Rounding of Inside Corners 
 

In Chapter 9.1. it was said that a simple rounding of a corner is possible, if instead of 

the bent boundary line another potential line, lying slightly more inside, is used as new 

boundary line. This procedure may be improved, if the boundary is only left for a detour 

through the region inside the field, in the immediate vicinity of the corner, which is to 

be modified. As illustrated in Figure 9.9b, in this manner the corner, which lies at point 

D on the real axis, is by-passed. In the z-plane, exclusively between D1 and D2, a 

curvilinear boundary is created. The remaining boundary stays unchanged. Corner D is 

cut out with the help of a pre-transformation. 

 

Example 6:  M 5, rounding of the inside corner in Mapping A 6 
 

A suitable pre-transformation is e.g. Mapping A 3.11 [15]: 

( ) ( )[ ] ( ) ( ) ( ){ }w w
h

a
w b w b w b w b w b1 2 1 2

3 2
1 2= − − − − − − −  (31) 

with  ( )a b b= −2 1 2/ .   (32) 

The parameters b1 and b2 determine the length of the curved area. With the parameter h 

the degree of the curvature is influenced. The height c of the cut out area in the w1 – 

plane, is proportional to h (c = h a). At D1 and D2 in the w1-plane the boundary has a 

horizontal tangent. 

 

Now the task is to round the inside corner in Mapping A 6. As seen in Figure 9.9, b 

equals 1 and the field map in the z-plane is given by 

 ( )z w n w w= − + + −1
2

1 1
21 1l .  (33) 

As the pre-transformation Eq. (31) does only affect the interval between D1 and D2, it is 

possible to employ it several times successively. In this manner each inside corner that 

has to be rounded, can be treated individually, independent from all others. 

 

The procedure is in principle also applicable for outside corners. However, in this case, 

as the dashed line at point B in Figure 9.9c shows, a swelling of the outside corner is 

created.
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Figure 9.9: M 5, rounding of an inside corner according to Example 6 

 

 

A further example for the application of this method is Mapping M 5.1. 
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10. Electrodes with Constant Field Strength 

 
In the conformal mappings discussed so far, the surfaces of the conducting electrodes 

were planes of constant potential. Through the process of conformal mapping from an 

original plane onto an image plane this property of a boundary, to be a potential line, 

was preserved. The electric field strength on this potential line, i.e. the distribution of 

the density of the field lines, which ended there, was always altered by the mapping. 

The task, which was to be solved by the application of the method of conformal map-

ping, is in most cases: How can the straight boundary of a uniform field (with constant 

field strength everywhere) be mapped onto the non-uniform field of a given problem 

with curvilinear boundaries, in order to be able to determine the local distribution of the 

electric field strength of this non-uniform field. By conformal mapping into another pla-

ne the electric field strength on a potential line will be altered in principle. 

 

However there are some technical applications, where systematically electrode configu-

rations are searched, on which the electric field strength is constant (e.g. in the field of 

high voltage engineering) or the task is to determine the trace of those boundaries with 

constant velocity, which were found experimentally (e.g. in the field of fluid dynamics). 

In the case of electrostatics an electrode with constant field strength in a field map 

( )z f w=  is defined by 

 

 1.  u = const  or  v = const  (potential line) (1) 

 

and 2.  
r
E

d w
d z d z

d w

const= = =
1

(const. field strength). (2) 

In the case of fluid dynamics such boundary resembles either a solid boundary (poten-

tial line), where the velocity of flow v is constant 

 

 rv const= ,   (3) 
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or the boundary of a free jet, e.g. as border line between streaming water and air or be-

tween streaming water and stagnant water, where the magnitude of the velocity of flow 
rv  is constant as well. 

 

In the two trivial cases, the uniform field  

 z w=  (4) 

and the field of a line charge 

 ( )z w= exp π  (5) 

all potential lines are as well lines of constant field strength. In the case of all other po-

tential fields 

 ( )z f w=  (6) 

there exists at most one potential line, where the magnitude of the electric field strength 

is constant. Figure 10.1 shows an example for such an electrode opposite to an inside 

right angle corner. The field lines are equidistant along the line CD. The electric field 

strength E is in the w-plane (uniform field) as well as in the z-plane constant. For the 

normalized case E = 1 follows  

 
d z
d w w w h=

= 1.  (7) 

The line CD in the z-plane has even sector-wise the same length as in the w-plane. For 

every point on this curve holds that the relative elongation is constant and equal to 1 re-

spectively 

 h

h

d z z= 1 and = 1.
d w w

∆
∆

 (8) 

The arc length in the z-plane is therefore 

 z dz u uh
z

z

=∫ −2 1
1

2

,  (9) 

if the boundary with the uniform field strength (Index h for homogeneous) is mapped 

like in Figure 10.1a onto a line v = const. Elsewise the arc length is v2 - v1.  

 

From this follows directly that a field with two neighboring lines, which satisfy this 

condition, is either a uniform field or the field of a line charge. Every non-uniform field 

can possess just one of these lines. In the case of symmetric fields or single or double 
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periodic fields this sentence is valid only for the non-uniform field within a non-

symmetric sector or within a periodic strip or within a periodic rectangle. 

 

With the help of fluid mechanics it can be derived that in the case of boundaries with 

infinite extension the channel width h1 at one end must be the same as the channel width 

h2 at the other end (Figure 10.1b). The flow must be uniform in each point at infinite 

distance. Because the flow rate is constant in the case of two continuous solid bounda-

ries, the channel widths must be the same in the uniform part of the field, as long as also 

the velocity is constant at the boundary. The proof of this property is even easier if the 

z-plane is looked upon as a complex Riemann sphere. Point C merges into point D and 

point B merges into point E in the infinite point. The channel ends are connected with 

each other in this point and there is a smooth transition of the boundaries. 

 

For the potential line with constant field strength follows from 1 1/
d w
d z

=  

 
∂

∂

∂

∂

x
u

y
u

h h⎛
⎝
⎜

⎞
⎠
⎟ +

⎛
⎝
⎜

⎞
⎠
⎟ =

2 2

1  (10) 

 
∂

∂

∂

∂

x
v

y
v

h h⎛
⎝
⎜

⎞
⎠
⎟ +

⎛
⎝
⎜

⎞
⎠
⎟ =

2 2

1  (11) 

 

Example 1:  Line with constant field strength in front of an inside corner 

 

The field map of Figure 10.1b is found with the conformal transformation 

 ( )w w1 = tanh π  (12) 

 w w2 1=  (13) 

 [ ]z j ar w w j= − + +2 2 2tanh arctan .π π  (14) 

 

On the potential line CD the electric field strength E is constant. There is (for  

z = zh ) 

 
r
E

d w
d z

w const= = =' .  (15) 
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The w'-plane or the (-w')-plane respectively is termed hodograph-plane in hydrodynam-

ics. The hodograph is the image of the line CD in this plane. Because the magnitude of 

w' is constant along this line, it is the arc of a circle, which is concentric to the origin. 

 

If instead of this the conformal mapping 

 z
d z
d w

' = . (16) 

is analyzed in the z'-plane, it is found from Eq. (12 through 14)  

 

 
d z
d w

d z
d w

d w
d w

d w
d w

= ⋅ ⋅
2

2

1

1  (17) 

 ( )d z
d w

j w= 2π πtanh . (18) 

 

Also in this plane it is obtained that 

 

 
d z
d w

const
w w h=

=  (19) 

 

with w u jh = + / .4  

 

In this plane the line DC is a circular arc, concentric to the origin, with the radius 2π 

(Figure 10.1c). 

 

If the field map in the z-plane is symmetrically complemented by mirror imaging at the 

axes, in such a way that all 4 quadrants are filled with field, then it is found that the im-

age of the total of 4 lines with constant field strength are mapped onto a full circle 

around the origin in the z'-plane. Outside this circle the field map in the z'-plane is com-

pletely defined. 

 

The images in electrodes with constant field strength are also examined in Chapter 1.5. 
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Figure 10.1: Field map of an infinite electrode with constant field strength (N 1)
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According to the theory of images (Chapter 1.5) the field map inside the circle is also 

defined and known. The potential line BAE outside the circle has as mirror image the 

potential line HGF inside the circle. This line is shown dotted in Figure 2c. This bound-

ary is also enclosed in the z-plane and in the w-plane. The interrelationship is straight-

forward and simple in the w-plane. The imaging at the line CD is there the imaging at a 

straight line. The correspondence between the points in the lower half strip and those in 

the upper half strip are well defined. From the examination of the point w → ± ∞ results 

in the z-plane that the channel widths must be the same there. The correspondence be-

tween all other points is easily determined as well. It can be calculated as the image in 

the circle of the z'-plane and by the transformation from the z'-plane in the z-plane. 

 

Having added the imaged boundary HGF in Figure 10.2b, it is evident that the Mapping 

N 1 in Figure 10.1 is nothing else but one half of the Mapping D 4 from the table of 

Mappings. The transformation equation Eq. (12-14), which was given in Example 1 

without explanation, in order to illustrate the shown relationships, was known already in 

advance, due to the theory of images. 

 

The potential line CD in Figure 10.1b, upon which the electric field strength is constant, 

has in parametric form the notation 

 

 x nh = − −
+

−

⎡

⎣
⎢

⎤

⎦
⎥π

π

π

ϕ

ϕ2
1

1 1
1

l
cos
cos

 (20) 

 y nh = − −
−

+

⎡

⎣
⎢

⎤

⎦
⎥π

π
π

ϕ

ϕ2
1

1 1
1

l
sin
sin

 (21) 

 

with 0 2≤ ≤ϕ π .  

 

The relationships shown in this example are valid for all fields with lines of constant 

field strength: 

• Potential lines with constant field strength in the z-plane are circular arcs con-

centric to the origin in the z'-plane. 
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Figure 10.2: Example 1 with mirror image of potential line BAE
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• A potential line with constant field strength has analogously to straight and cir-

cular potential lines the property of a mirror. If the field map is known on one 

side, the field map on the other side is known too. 

• If a transformation equation, whose field map contains a potential line, which is 

a circular arc, concentric to the origin, is integrated, then this line is transformed 

into a potential line with constant field strength. 

• The line of constant field strength is always the center line (symmetry line) in 

the w-plane.  

 

With the help of these imaging laws it is possible to find more field maps with conduct-

ing boundaries with constant field strength (Group of Mappings N). Figure 10.3 illus-

trates some examples. The imaged boundary is shown dashed. 

 

In Mapping N 1 (Figure 10.1) the line of constant field strength is: 
 

 ln coth( / 2)h hy x= . (22) 

In Mapping N 1.3 (Figure 10.3b) the line of constant field strength is: 
 

 1 ln cos(2 )
2h hx y= − . (23) 

In Mapping N 1.1 (Figure 10.3c) the line of constant field strength is: 

 

 
22

2 2 2 2

1 sn ( , )1ln
dn ( , ) sn ( , )cn ( , )h

k v kkx
k v k k v k v k

⎧ ⎫⎡ ⎤−+⎪ ⎪⎣ ⎦= ⎨ ⎬+⎪ ⎪⎩ ⎭
 (24) 

 sn( , )cn( , )2arctan
dn( , )h
v k v ky k

v k
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

. (25) 

In Mapping N 1.2 (Figure 10.3f) the line of constant field strength is: 

 

 
2

2

2 sn ( , )ln(1 2) ln
2 sn ( , )h

v kx
v k

⎧ ⎫+⎪ ⎪= + − ⎨ ⎬
−⎪ ⎪⎩ ⎭

 (26) 

 sn( , )dn( , ) 1 cn(2 , )2arctan 2arctan
cn( , ) 1 cn(2 , )h

v k v k v ky
v k v k

−
= =

+
. (27) 
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Figure 10.3: Field maps, which contain potential lines with constant field strength  

    (pale green). The imaged boundary is shown dashed. 
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Example 2: Borda’s mouthpiece 

 

In the field of high voltage engineering [1] and in the field of hydrodynamics [28, 30] 

an electrode configuration according to Figure 10.4 is known. It is termed π-Borda pro-

file [1] or Borda’s mouthpiece [3]. In a large fluid tank there is a long channel with par-

allel side walls AB and A'B' (dark green). Through this empty channel the fluid flows 

out of the tank. Though the direction of flow is downwards in Figure 10.4 the influence 

of the gravitational force is not accounted for. Provided that this yields a potential flow, 

the curves BC and B'C' are the boundary lines of the free jet. In the pale green regions 

there is no fluid or stagnant fluid respectively. 

 

In the field of fluid dynamics several methods exist, with which it is possible to deter-

mine the boundary lines of free jets analytically [30, 28, 32, 1, 3]. In parametric form 

line BC is found as 

 x = −sinϕ ϕ  (28) 

 ( )y n= − +1 2 2cos cos /ϕ ϕl  (29) 

with 0 ≤ ≤ϕ π .  

 

To calculate the field map we return to the notations of electrostatic fields and consider 

only one half of the symmetrical arrangement (Figure 10.5a). According to the laws of 

mirror imaging, which are valid for the dashed line BC with constant field strength E, at 

first point E is mapped into point D and the distances DC and CE are the same (imaging 

at a straight line). Point B apparently remains unchanged at the same location. The com-

plete large area to the right from line ABC is imaged onto the dashed small area to the 

left from DBC. The field in the large area emanates from a positive line charge +1 at −∞ 

and ends in a negative line charge −1 at +∞. The field in the mirror imaged area also 

ends in a line charge −1 at +∞. Consequently there must be a positive line charge with 

the magnitude +1 on the line DB that creates this field. This location G is the mirror im-

age of the points A and F respectively. 

 



10.   Electrodes with Constant Field Strength 
_____________________________________________________________________________________ 

Vs. 1.1 

11

Because line charges can be arbitrarily added by pre-transformations, the first task is: 

Which transformation equation creates the field map between a half straight line ABD 

and an infinite straight line FE? From the table of Mappings the Mapping C2 is found. 

The function 

 z w n w= − −1 1l  (30) 

maps the lower w1 – half plane (Figure 10.5b) onto the upper z-half plane (Figure 

10.5a). The complete line charge of magnitude −2 in point C = point D = point E at + ∞ 

is mapped onto the origin of the w1 -plane. Point B goes to −1. The line charge of mag-

nitude +1 is located somewhere between B and D. The line charge of magnitude +1 at 

point A = point F lies at w1 = ∞. 

 

In the next step the pre-mapping is searched, which creates this line charge distribution 

on the real axis. From Example 3.2 or from the Mapping L 3 in the table of Mappings 

the following transformation equation is found 

 

 
( )

( )[ ]w a
w

w1 2
1 1 4= − + − ⋅

⎧
⎨
⎩

⎫
⎬
⎭

exp
exp .

π
π  (31) 

 

The factor a, that fixes the location of the point G in the w1 – plane, still has to be de-

termined. As exactly that transformation equation is searched, for which 

  

 
d z
d w

const=  (32) 

 

is valid on line BC, this condition is used to determine a = 1/2. After this the transfor-

mation equation and the field map of the π-Borda profile are completely known. 

 

The π-Borda profile is used for example in the field of high voltage engineering, to 

avoid extreme field strength spikes or to create uniform fields. This results in consid-

erably smaller fringing regions as compared to the Rogowski profile (Center line v = 

0,5 in Mapping C 2), which is used in the majority of cases.
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Figure 10.4: Plane fluid flow in an open channel (Borda’s mouthpiece, N 2.2) 
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Figure 10.5: Example 2, π-Borda profile 
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Example 3:  Fluid flow against a perpendicular plate 

 

The field map of a wide-stretching flow is to be determined, which strikes a thin plate of 

width 2a perpendicularly. The velocity of flow vanishes in point B. On the line BC the 

flow is exclusively horizontal. Due to this, the flow leaves the plate in point C. On the 

line CD the border line of a free jet is created (green line, Figure 10.6). 

 

The problem is solved with the method of superposition of fields. Only one half of the 

symmetrical configuration is considered. The field of a step, already known from Ex-

ample 4.1 

 

 z w w arcin w1 1= ⋅ − +  (33) 

 

is superposed with a field, which has the same boundaries from A to C in the w-plane as 

well as in the z-plane and which creates a horizontal flow component along the bound-

ary CD (Figure 10.7), because now the boundary continues horizontally to the infinite 

point, instead of vertically, as the step does: 

 z b w2 = .  (34) 

The solution is 

 z z z= +1 2 .  (35) 

The still unknown factor b is determined by the condition 

 
d z
d w

const
u ≥

=
1

. (36) 

It follows b = 2. The complete solution is 

 

 z w w w arcin w= + − +2 1  (37) 

 

with a = +2 2π /  (Mapping N 2.1). 
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z

A

B

a a CC'

D' D

 

In order to keep this example as simple as possible, the transformation equation for z1 

that was given as solution in Example 4.1 {Eq. (4.32)}, where the points B and C are at 

w = ± 1, was not used in this case. If Eq. (4.32) is taken, the field which is to be super-

posed would be  

 z w2 2 1= −  (38) 

Nevertheless this variant of the solution yields as a matter of course the same field map. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.6: Example 3, uniform fluid flow against a perpendicular plate, 

    Mapping N 2.1
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Figure 10.7: Solution method for Example 3 

 

 

 

 



10.   Electrodes with Constant Field Strength 
_____________________________________________________________________________________ 

Vs. 1.1 

17

Example 4:  Laminar flow out of a slot 

 

In a large fluid tank, as illustrated in Figure 10.8, there is a slot of width 2a. Once again 

the outpouring fluid gets a horizontal velocity component because of the boundary CD. 

The result is the borderline of a free jet DA (π/2-Borda profile) with the parametric 

form 

 x n= − +⎛
⎝⎜

⎞
⎠⎟

sin tanϕ
ϕ π

l
2 4

 (33) 

 y = −1 cosϕ  (34) 

 

with 0 2≤ ≤ϕ π / .  

 

The transformation equation is found analogously to Example 3 by the superposition of 

two fields ( )z w1  and ( )z w2  (Figure 10.9). 

 

 z w w1 1
2

1
21 1

2
= − − − −arctan

π
 (35) 

 z b w2 1= ⋅  (36) 

 

with ( )w w1 = exp π . (37) 

From the condition 

 

 
( )d z z

d w
const

DA

1 2+
=  (38) 

 

the constant b is determined as b = 1. Thus the solution is: 

 

 z w w w= + − − − −1 1
2

1
21 1

2
arctan

π
 (39) 

 

with ( )w w1 = exp π  (40) 

and a b= + =1 2 2π π/ , / .  (41) 
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Figure 10.8: Mapping N 2, fluid flowing out of a slot, π/2-Borda profile 
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Figure 10.9: Solution method for Example 4, Mapping N 2 
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11. Elliptic functions 

 

11.1 Introduction 

 

In order to illustrate the difference between elliptic functions and trigonometric func-

tions, at first the function z w= tanh  is examined as an example for a conformal map-

ping with a trigonometric function. As shown in Figure 11.1, the transformation with 

tanh w yields the field map of a line charge in front of a conducting plane. If the poten-

tial of the plane is set to 0, the potential increases when the line charge is approached. In 

the location of the line charge the value of the potential reaches infinity. 

 

As a result, the number of the field lines (in Figure 11.1a the field lines n = 0 through 5 

are plotted as continuous blue lines) is infinite and thus the field in the I. quadrant of the 

z-plane is mapped onto a half strip in the w-plane of infinite length. 

 

All 4 quadrants of the field map are transformed into an infinitely long parallel strip of 

width π in the w-plane (Figure 11.1c). 

 

The function tanh w has in the direction of the imaginary axis the period π. In the direc-

tion of the real axis there is no periodicity. The function is termed "single-periodic". 
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Figure 11.1: Transformation with a trigonometric function, z = tanh (w) 
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tanh ( )
sinh ( ) sin ( )
cosh ( ) cos( )

u jv
u j v
u v

+ =
+

+

2 2
2 2

 (1) 

 

( )tanh tanh ( )w jn w± =π  n = 0, 1, 2,...  (2) 

 

 

Symptomatic for a conformal transformation with a trigonometric function is therefore 

that the field of the electrode configuration in the z-plane is produced by the mapping of 

a parallel strip in the w-plane of infinite extension. The orientation of this parallel strip 

in the w-plane is basically irrelevant. Every transformation function f(w) can be rotated 

arbitrarily by multiplication with the constant ( )exp jϕ . Trigonometric functions are 

single-periodic functions. 

 

In case the parallel strip has the width 2π and is parallel to the real axis this means: 

 

f w n f w( ) ( )± ⋅ =2π  with n = 0, 1, 2, ...  (3) 

 

The transformation equations are infinitely ambiguous, that means all parallel strips that 

are displaced by ± n 2π  yield the same field map in the z-plane. Transformations with 

trigonometric functions are for example the mappings B 1, B 2.2, B 3.3, C 1, D 4, F 2, 

G 1, H 2, K 1 etc. 

 

In comparison to this, the field of a metal strip in front of a grounded, conducting plane 

is analyzed (Figure 11.2a). If the metal strip is given the potential U Vs = 10  and if the 
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potential lines are plotted with a potential difference of ∆U V= 1 , than this results in 11 

potential lines, including the boundaries (n = 0 through 10). Because also the number of 

field lines is finite (e.g. m = 0 through 5 as in Figure 11.2a), this field map in the z-plane 

corresponds to a uniform field in a rectangle in the w-plane. All 4 quadrants of the z-

plane are mapped onto a rectangle in the w-plane with the edge length 2 K in the u di-

rection and 2 K'  in the v direction. 

 

The function, which yields this transformation, is the elliptic function z sn w k= ( , ) (pro-

nounced "ess-enn of w and k"). k is the modulus of the function. The magnitudes of K 

and K' and the aspect ratio K'/K of the rectangle respectively is determined by the 

modulus. For ( )sn w k,  both, the real part 

( )f w n K f w± =4 ( )  n = 0, 1, 2, ...  (4) 

and the imaginary part are periodic. 

( )f w jm K f w± =2 ' ( )  m = 0, 1, 2, ...  (5) 

sn w k= ( , ) is a "double-periodic" function. 

 

The function is infinitely ambiguous, i.e. all rectangles displaced by 

± n 2K or ± m2K' yield the same field map in the z-plane. Analogous to the trigonomet-

ric example in Figure 11.1 the function is continued perpendicular to the red boundaries 

as an even function and perpendicular to the blue boundaries as an odd function. 
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Figure 11.2: Transformation with an elliptic function, z = sn (w, k) with k=0,3 
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The general property of a mapping with an elliptic function is thus that the complete z-

plane is mapped onto a rectangle in the w-plane. Elliptic functions are double-periodic, 

meromorphic functions of a complex variable. The three elliptic functions that will be 

used in this book are the Jacobian elliptic functions sn(w,k), cn(w,k) and dn(w,k) [13-

16]. 

 

The mapping of a sector of a field map in the z-plane onto a rectangle in the w-plane is 

also possible with trigonometric functions (e.g. Mapping E 1). Only if the complete z-

plane or the complete area of a fundamental period of a field map which is periodic in 

the z-plane is to be mapped, then the use of elliptic functions is mandatory. 

 

Irrespective of the fact that the potential in the field map in Figure 11.2a has only finite 

values, the field strengths in points D and C and likewise in point C in Figure 11.1a 

reaches an infinite magnitude. 

 

11.2 The Function sn (w, k) 

 

The function sn (w, k) is periodic. 

 

sn w n K k sn w k( , ) ( , )± =4  (6) 
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( ) ( )sn w jn K' , k sn w,k± =2  n = 0 1 2, , ,...  (7) 

( ) ( )sn w n K j K ,k sn w,k± + =( ' )4 4  (8) 

 

Analogous to the function sin x with the period 2π , which is well-defined by the values 

of the function between x = 0 and x = π/2, also for the function ( )sn w k,  all other val-

ues of the function in the complete w-plane are found from those inside the fundamental 

rectangle with the edge lengths K and K' by the mirror images beyond the boundaries 

and by periodic recurrence of this rectangle respectively. 

 

The value of the function ( )sn w k,  is, just as well as the value of the trigonometric 

functions, calculated by evaluating a series expansion. One example amongst the vari-

ous possible series expansions is given in the BASIC program 

( )Csn w w k z zRe , Im , , Re , , Im  in the appendix. 

 

With the modulus k of the function ( )sn w k,  it is possible to calculate the side lengths 

K and K' of the fundamental rectangle (see Chapter 12). The aspect ratio K K'  is de-

fined by k. K, K’, k and K/K’ may be determined with excellent accuracy using elemen-

tary functions (see Eq. (13.37) – (13.45)). 

 

The value v K= ' 2  yields a circle in the z-plane. The center point is z = 0 and the ra-

dius r k= 1 . By using this circle as a mirror, point D is imaged into point C. 

 

There is no circle for u K= 2, for no value of k ≠ 0 (Figure 11.3). 
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Figure 11.3: Mapping of u=K/2 (blue) and v=K’/2 (red) for z = sn (w, k) with k=0,3 

 

Special cases: 

 

With increasing modulus k the side K of the rectangle increases and K' decreases. The 

strip in the z-plane becomes more and more narrow. For k = 1 the width of the strip is 0. 

The conducting strip fades to a line charge. The rectangle in the w-plane becomes a half 

strip, which extends to infinity. 

 

( )sn w k w, tanh= =1  (9) 

 

K k( )= = ∞1  (10) 

 

K k' ( )= =1 2π  (11) 

 

r = 1/sqr(k)

1/sqr(1+k')

1/sqr(1- k')

z
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For k = 0 the conducting strip begins at x = 1 and extends to infinity. The rectangle in 

the w-plane is infinitely high. 

 

( )sn w k w, sin= =0  (12) 

 

K k( )= =0 2π  (13) 

 

K k' ( )= = ∞0  (14) 

 

Hence it is evident that the elliptic functions are a generalization and an extension of the 

trigonometric and of the hyperbolic functions respectively. 

 

11.3 The Functions cn (w, k) and dn (w, k) 

 

The elliptic functions ( )cn w k,  and ( )dn w k,  (likewise pronounced as single letters: 

see-enn and dee-enn), are derived from the function ( )sn w k, . According to Chapter 6 

they are successive transformations. 

 

Therefore they do not yield fundamentally novel mappings. They can be used to shorten 

the notation of the transformation equations. 

 

From the function ( )sn w k,  it is derived analogously to sin w and cosw with 

cosw = −1 2sin w  
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from 

( ) ( )sn2 cn2w k w k, ,+ = 1 (15) 

( ) ( )cn sn2w k w k, ,= −1  (16) 

and from 

k sn w k dn w k2 2 2 1( , ) ( , )+ =  (17) 

( ) ( )dn w k k sn w k, ,= −1 2 2  . (18) 

 

( )cn w k,  is periodic with 4 4 2 2K j K K j K, ' , '+  

 

( )dn w k,  is periodic with 2 4 4 4K j K K j K, ' , ' .+  

 

Figure 11.4 shows the mapping with cn (w, k). 

 

In contrast to ( )sn w k,  the rectangles in the w-plane are not arranged in the same pat-

tern as the quadrants in the z-plane, onto which they are mapped. The point z = 0  lies at 

w K= (Point D). Therefore the four quadrants of the z-plane are mapped onto those 

rectangles in the w-plane, which have point D in common. According to the laws of the 

conformal mapping with the same sense of rotation (Figure 11.5c). 

 

The transformation by ( )dn w k, (Figure 11.5) yields the same electrode configuration 

like the function ( )sn w k,  (see Eq. (35)). Likewise there is also a circle in this case for 

u K= 2 . The mirror image of point D in this circle is point A.
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k'/k
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D

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11.4: Transformation with the elliptic function z = cn (w, k) with k=0,6 
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b)

c)

K'
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II.III.
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D
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y

D
K

2K

1k'

B

C

r=sqr(k')

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11.5: Transformation with the elliptic function z = dn (w, k) with k=0,9 
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Limiting values: 

 

( )cn w k w, cos= =0  (19) 

( )cn w k w, cosh= =1 1  (20) 

( )dn w k, = =0 1 (21) 

( )dn w k w, cosh= =1 1  (22) 

 

Once again the origin of the z-plane is not mapped onto the origin of the w-plane. Point 

C is mapped onto K jK+ ' . The four quadrants of the z-plane are arranged around this 

point counter clockwise (Figure 11.6c). 

 

11.4 Some Calculation Formulas 

 

( ) ( )sn w k sn w k− = −, ,  (23) 

 

( ) ( )cn w k cn w k− =, ,  (24) 

 

( ) ( )dn w k dn w k− =, ,  (25) 

 

( )( ) ( ) ( )∂
∂w

sn w k cn w k dn w k, , ,= ⋅  (26) 

 

( )( ) ( ) ( )∂
∂w

cn w k sn w k dn w k, , ,= − ⋅  (27) 
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( )( ) ( ) ( )∂
∂w

dn w k k sn w k cn w k, , ,= − ⋅ ⋅2  (28) 

 

( ) ( ) ( )sn w k dw
k

n dn w k
k

cn w k, , ,∫ = −⎛
⎝⎜

⎞
⎠⎟

1 1  (29) 

 

( ) ( )cn w k dw
k

dn w k, arccos ,∫ =
1  (30) 

 

( ) ( )dn w k dw sn w k, arcsin ,∫ =  (31) 

 

 ( ) ( )
( )

( )
( ) ( )( )sn w k dn w k

cn w k
cn w k
cn w k w

n cn w k
, ,

,
,
,

,
⋅

=
−
+

= −
1 2
1 2

∂
∂

 (32) 

 

 ( ) ( )
( )

( )
( ) ( )( )sn w k cn w k

dn w k k
dn w k
dn w k k w

n dn w k
, ,

,
,
,

,
⋅

=
−
+

= −
1 1 2

1 2
1

2
∂
∂

 (33) 

 

 ( ) ( )
( )

( )
( ) ( )( )cn w k dn w k

sn w k
cn w k dn w k

sn w k w
n sn w k

, ,
,

, ( , )
,

,
⋅

=
+

=
2 2

2
∂
∂

 (34) 

 

dn w k k sn jw K k jK k k( , ) ' ( ' ( ) ( ), ' )= + +  (35) 

 

[ ] 1sn w+ jK'(k),k =
ksn(w,k)

 (36) 

 

( )
( )

sn y,k'
sn (jy,k) = j

cn y,k'
 (37) 

 

[ ]
1k =

sn K(k) + jK'(k),k
 (38) 
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[ ]k' = dn K(k),k  (39) 

 

More calculation formulas and properties of the elliptic functions are given in the two 

following chapters about elliptic integrals and about Theta functions. Comprehensive 

calculation formulas are compiled in [2]. 
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12. Elliptic Integrals 

 

To get acquainted with the elliptic integrals they are compared to the trigonometric 

functions. 

 

The inverse function of the function t = sin ϕ is the function 

 

  ϕ = =
−∫arcsin t dt

t

t

1 2

0

           (1) 

 

The function arcsin t is defined by an integral. “Exact“ numerical values for sin ϕ as 

well as for arcsin t cannot be calculated in an elementary way, but only as the sum of an 

infinite series. 

 

The inverse function of the function t = sn (u,k) is the function 

 

  u F t k dt
t k t

a

t

= =
− −∫( , )

( )( )1 12 2 2

0

         (2) 
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Fa (t,k) is termed the elliptic integral of the first kind. The notation used in this case is 

the algebraic form, therefore the index a. Numerical values for sn (u,k) and Fa (t,k) can 

only be calculated as the sum of an infinite series. 

 

Integrals of the form 

 

  R x y dx( , )∫             (3) 

 

where R(x,y) is a rational function of x and y and where y is the root of a polynomial of 

3. or 4. order in x without multiple zeros, are called elliptic integrals. In those special 

cases where the integral can be expressed by elementary functions, it is called pseudo 

elliptic. 

 

Every elliptic integral can be expressed by the three standard forms, the elliptic integral 

of the first kind, of the second kind and of the third kind as well as by additional inte-

grals of rational functions. Comprehensive tables of integrals are contained in [18] and 

[21]. 

 

The adjective “elliptic“ derives historically from the fact that the arc length of an ellipse 

is defined by the elliptic integral of the second kind. With the terms in Figure 12.1 fol-

lows, if the ellipse is defined by x = a sin ϕ and y = b cos ϕ: 

 

  ds dx dy a b d= + = +2 2 2 2 2 2cos sinϕ ϕ ϕ        (4) 
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b

a

ϕ

s

y

x

dx
dy

ds

Thus the arc length s is: 

 

  s a b d= +∫ 2 2 2 2

0

cos sinϕ ϕ ϕ

ϕ

         (5) 

 

With the abbreviation k b a= −1 2 2/  results  

 

  s a k d= −∫ 1 2 2

0

sin ϕ ϕ

ϕ

          (6) 

 

  s a E kt= ( , )ϕ             (7) 

 

Et(ϕ,k) is the elliptic integral of the second kind in trigonometric form. 

 

 

 

 

 

 

 

 

 

 

Figure 12.1: Calculation of the arc length of an ellipse
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Again this example shows the relationship to the trigonometric functions. There the val-

ues of the functions can be defined geometrically with the help of a circle. 

 

Elliptic integrals are very often used to calculate conformal mappings. According to 

chapter 4 there is in the mapping of polygonal boundaries for every right angle a term in 

the integrand of the transformation equation like 

 

  z w w dw
w

= − ±∫ ...( ) .../
0

1 2

0

          (8) 

 

Thus transformation equations for polygonal domains with more than two right angles 

always contain elliptic (or pseudo elliptic) integrals. 

 

12.1 The Elliptic Integral of the First Kind 

 

In mathematical text books and formularies [2, 11 - 15, 18] the elliptic integral of the 

first kind is denoted by the letter F. The different forms of the elliptic integrals of the 

first kind are discriminated in such a way that each form uses an individual letter for the 

variable. The algebraic form is defined by: 

 

  F t k dt
t k t

t

( , )
( )( )

=
− −∫ 1 12 2 2

0

         (9) 
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With the substitution t = sin ϕ the trigonometric form is found 

 

  F k d
k

( , )
sin

ϕ
ϕ

ϕ

ϕ

=
−∫ 1 2 2

0

        (10) 

 

and for the integrals of the second kind and of the third kind a third notation is added 

with the substitution t = sn (u,k). 

 

As it is not possible in the practical application of these functions to stick to a fixed no-

tation of the variables with t, ϕ and u, the consequence was that elliptic integrals are 

thought of as exotic, and in addition that their usage was prohibited for the standard user 

from the engineering sciences due to time constraints. 

 

In order to avoid this variety of notations ( the manifold of notations used by various au-

thors were not even yet mentioned), three indices are introduced in the following text, 

with whom the different forms of the elliptic integrals can be clearly distinguished. For 

the elliptic integral of the first kind follows: 

 

The algebraic form: 

 

  F w k dw

w k w
a

w

( , )
( )( )

=
− −∫ 1 12 2 2

0

       (11) 
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The trigonometric form: 

 

  F w k dw
k w

F w kt

w

( , )
sin

( , )=
−

=∫ 1 2 2

0

      (12) 

 

with the conversion equations: 

 

  F w k F w kt a( , ) (sin , )=         (13) 

  F w k F w ka t( , ) (arcsin , )=         (14) 

 

Furthermore holds: 

 

  F w k z w sn z ka( , ) ( , )= ⇒ =        (15) 

  F w k z w sn z kt ( , ) arcsin( ( , ))= ⇒ =       (16) 

 

For the upper limits of integration w = 1 and w = π/2 respectively the complete elliptic 

integrals of the first kind are obtained. 

 

  K k F w k dw

w k w
a( ) ( , )

( )( )
= = =

− −∫1
1 12 2 2

0

1

     (17) 

 

  K k F w k dw
k w

t( ) ( / , )
sin

/

= = =
−∫π

π

2
1 2 2

0

2

      (18) 
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For the complementary modulus k k'= −1 2 follows: 

 

  aK'(k) = K(k') = F (w = 1,k')         (19) 

  tK'(k) = K(k') = F (w = / 2,k')π        (20) 

 

K(k) and K´(k), the complete elliptic integrals of the first kind, are the lengths of the 

sides of the rectangles in the mapping with the function z = sn (w,k) in Figure 11.2. 

K(k), K’(k), k and K/K’ can be determined approximately with very high accuracy with 

elementary functions (see Eq. (13.37) – (13.45)). For k = 1 2  the rectangle turns into 

a square with k = k’ and 
( )21/ 4

2( ) '( ) 1,854
1 2

K k K k π
−

= = =
+

. 

 

Instead of the modulus k with 

  k k2 2 1+ ='           (21) 

 

as well the parameter m may be used. 

  m k= 2           (22) 

  m m+ =' 1          (23) 

 

Furthermore the modular angle (or argument) α is in use: 

 

  k = sinα           (24) 

  k' cos= α           (25) 
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Figure 12.2 shows the mapping that belongs to the elliptic integral of the first kind Ft 

(w,k). A parallel strip with the width π in the w-plane is mapped onto a rectangle with 

the width 2K and the height 2K´. The straight line CD  is rotated in point C by 90° and 

the point ∞ (point D) is mapped into jK´. Because the parallel strip contains an infinite 

number of lines v = const, this results in a line charge in point D of the z-plane. 

 

The mapping is in both planes symmetrical with respect to the axes. The origin A is 

again mapped onto the origin. The allocation of the quadrants remains the same, i.e. the 

half strip in the III. quadrant of the w-plane is mapped onto the rectangle in the III. 

quadrant of the z-plane, etc. 

 

Because the variable w in Eq. (12) appears only as the argument of the sine function, a 

periodicity with π results from sin2w. 

 

Because the integration from 0 through π/2 yields the value K and every further part of 

the integration from w through w + π/2 also yields K, all parallel strips in the w-plane 

displaced by ±n ⋅ π are mapped onto the corresponding rectangular regions  displaced 

by ±n ⋅ 2K (Figure 12.2c). 

 

  F w n k n K F w kt t( , ) ( , )± = ± +π 2  with n = 0 1 2, , , ...     (26) 
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A
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DD

−π /2 π /2

w

w z

z

arcosh 1/k

A B

CD

K

K'

+

-

n=2 n=2n=1 n=1n=0 n=0n=-1 n=-1

a) b)

c) d)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12.2: The transformation z = Ft(w,k) for 0 ≤ k ≤ 1, Mapping I 1.2 

 

Limiting cases: 

K’ increases for k → 0 and point D moves to ∞. In the limit k = 0 the following is 

reached: K = π/2, K´=∞ and the parallel strip of the w-plane is mapped onto an identical 

parallel strip in the z-plane (Figure 12.3a). 

 

  F w k wt ( , )= =0          (27) 

 

K increases for k → 1 and point B moves to ∞. In the limit k=1: K = ∞, K´=π/2 and the 

rectangle degenerates to a parallel strip. 
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A A
B

C

DD

−π /2 π /2

z

B

BCD

a) k = 0 b) k = 1

z
+

-

π /2

π /2

 

  F w k w ar wt ( , ) ln tan( / / ) tanh(sin )= = + =1 2 4π      (28) 

 

Because of Fa (w,k=1) = Ft (arcsin w, k) the algebraic form of the elliptic integral of the 

first kind is according to chapter 5 a pre-transformation with arcsin w. It follows that the 

geometry of the boundary in the z-plane, like it is seen in Figure 12.2, stays unchanged. 

Only the potential distribution along the boundary is modified. Figure 12.4 shows the 

mapping with Fa (w,k). The complete w-plane is mapped onto a rectangle with the sides 

2K and 2K´. The relationship with the inverse function z = sn (w,k) in Figure 6.2 is in-

tuitively evident. 

 

 

 

 

 

 

 

 

 

 

 

Figure 12.3: Limiting cases of the transformation z = Ft(w,k) 
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K
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1 1/k

 

 

 

 

 

 

 

 

 

Figure 12.4: The transformation z = Fa(w,k) for 0 ≤ k  ≤ 1, Mapping Q 4 

 

Please pay attention to the difference: If according to Figure 12.4 a Cartesian lattice in 

the w-plane with an infinite number of potential lines and an infinite number of field 

lines is mapped onto a finite rectangle in the z-plane, than this results in a line dipole in 

point D of the z-plane. 

 

If on the contrary according to Figure 11.2 the Cartesian lattice in a finite rectangle in 

the w-plane is mapped onto the complete z-plane, than this results in a field map with a 

finite number of potential lines and field lines. 

 

More calculation formulas: 

 

  F w k F w kt t( , ) ( , )− = −         (29) 

  F snw k wa ( , ) =          (30) 
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d
dw

F w k
w k w

a ( , )
( )( )

=
− −

1

1 12 2 2
       (31) 

  d
dw

F w k
k w

t ( , ) =
−

1

1 2 2
        (32) 

 

In contrast to the Jakobian elliptic functions, where the modulus k is usually limited to a 

real number between 0 and 1, the modulus k of the elliptic integrals can be in principle 

an arbitrary complex number. 

 

In the case of the elliptic integral of the first kind follows: 

 

Modulus k imaginary or k´ > 1: 

 

  2 2
0k' > 1, real k = 1- k' = j k' -1 = jk⇒      (33) 

  k k2
0
2= −   k k'= +1 0

2        (34) 

  F w jk dw
k w

t

w

( , )
sin

0

0
2 2

0
1

=
−∫        (35) 

 

The values of the function for k´ > 1 can be determined with the subroutine Cet (u, v, k´, 

1, 1, Re, Im), which is applicable for 0 ≤ k´ < ∞. The subroutine Cfa (u, v, k, 1, 1, Re, 

Im), which is only valid for 0 ≤ k´ ≤ 1 can alternatively be used, with the help of the fol-

lowing conversion formulas: 
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F w jk
k

F k w
k w

k
kt a( , )

'
'sin

sin
,

'0

0
2 2

01
1

=
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟       (36) 

 

Furthermore: 

 

  F w jk
k

F w k k K k kt t( , )
'

, / ' ( / ' )0 0 0
1

2
= −⎛

⎝⎜
⎞
⎠⎟
+

⎡

⎣
⎢

⎤

⎦
⎥

π      (37) 

 

Figure 12.5 shows the associated mapping. Starting from Figure 12.2 with k´< 1 the line 

charge moves in the z-plane for k´→ 1 along the imaginary axes to the point of infinity. 

For k´ > 1 it moves backwards, parallel displaced on the straight line z = K with con-

tinuously decreasing imaginary part. Compared to the possibilities in the region 0 ≤ k´ ≤ 

1 no topologically novel mappings are generated for k´ > 1. 

 

The dimensions of the rectangles are: 

 

  K jk
k

K k
k

( )
' '0

01
= ⎛

⎝⎜
⎞
⎠⎟

         (38) 

          K jk
k

K
k

' ( )
' '0

1 1
= ⎛

⎝⎜
⎞
⎠⎟

         (39) 
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arsinh 1/k
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Figure 12.5: The transformation z = Ft(w,jk0) 

 

Modulus k > 1: 

 

  F w k
k

F k w kt a( , ) ( sin , / )> =1 1 1        (40) 

 

with 

 

  K k
k

K k( ) ( / )> =1 1 1         (41) 

  K k
k

K k'( ) '( / )> =1 1 1         (42) 

 

The transformation is shown in Figure 12.6. Compared to the case k = 1 in Figure 

12.3b, it can be seen that the point of infinity, point B from Figure 12.3b moves to K + 

jK´ for k > 1. The line charge stays unchanged on the imaginary axis. 
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π /2
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z

A
B

CD

K
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+
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arcsin 1/K

 

 

 

 

 

 

 

 

 

Figure 12.6: The transformation z = Ft(w, k>1) 

 

 

12.2 The Elliptic Integral of the Second Kind 

 

The elliptic integral of the second kind is denoted by the letter E. The algebraic form is: 

 

  E t k k t
t

dta

t

( , ) = −

−∫ 1
1

2 2

2

0

.        (43) 

 

By substituting the variable in the integrand with t = sinϕ the trigonometric form is 

found 
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  E k k dt ( , ) sinϕ ϕ ϕ

ϕ

= −∫ 1 2 2

0

.       (44) 

 

If substituting in Ea (t,k) with t = sn u the elliptic form results 

 

  E u k dn u k due

u

( , ) ( , )= ∫ 2

0

        (45) 

 

In common notation, with the complex variable w, the algebraic form is 

 

  E w k k w
w

dwa

w

( , ) = −
−∫ 1

1

2 2

2

0

,       (46) 

 

the trigonometric form is 

 

  E w k k w dw E w kt

w

( , ) sin ( , )= − =∫ 1 2 2

0

      (47) 

 

and the elliptic form is 

 

  E w k dn w k dwe

w

( , ) ( , )= ∫ 2

0

.        (48) 
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The three forms can be converted into each other with the following: 

 

  E w k E w kt a( , ) (sin , )=         (49) 

 

  E w k E w ka t( , ) (arcsin , )=         (50) 

 

  E w k E sn w k ke a( , ) [ ( , ), ]=         (51) 

 

  E w k E F w k ka e a( , ) [ ( , ), ]=         (52) 

 

When discussing the elliptic integral of the first kind, the elliptic form Fe (w,k) was not 

mentioned, because for that one holds: 

 

  F w k F sn w k k we a( , ) [ ( , ), ]= = .       (53) 

 

For the upper limits of integration w = 1 , w = π/2 and w =K respectively the complete 

elliptic integral of the second kind is found: 

 

  E k E w k E w k E w K k ka t e( ) ( , ) , [ ( ), ]= = = =⎛
⎝⎜

⎞
⎠⎟
= =1

2
π     (54) 

 

For the complementary modulus k k'= −1 2  results 

 

  E’(k) = E(k’).          (55) 
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For the complete elliptic integrals of the first and second kinds holds: 

 

  EK E K KK' ' ' /+ − = π 2         (56) 

 

For k = 1 2/  it is found that k = k´ and accordingly E = E´. For k = 0 it is found that E 

= π/2 (see Eq. (57), circumference of a circle). 

 

The complete elliptic integral of the second kind is geometrically defined by the cir-

cumference of an ellipse with the half axes a and b (see Figure 12.1): 

 

  Circumference of an ellipse ( )2 2= 4a E k = 1- b /a      (57) 

 

Normalized to a = 1 and b = k this is: 

 

  Circumference of an ellipse = 4 E(k’)      (58) 

 

k is the numerical excentricity of the ellipse. The occurrence of this integral when cal-

culating the arc length or the circumference of an ellipse has given the elliptic integrals 

and their inverse functions, the elliptic functions, their name. 

 

Figure 12.7 shows the transformation, which belongs to Et (w,k). A parallel strip in the 

w-plane is mapped onto the region that is depicted in the z-plane. The right boundary of 

the parallel strip is bent outside by 90° at the point D. 
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E
C

π /2
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arcosh 1/k

A

B
C
D

a) b)

D

K'-E'

 

The left half plane, which is not shown, can be complemented as a mirror image. 

 

  E w k E w kt t( , ) ( , )− = −         (59) 

 

Et (w,k) is like sin2 w periodic with the period π. All other parallel strips, which are dis-

placed by ± nπ in the w-plane, yield the same mapping in the z-plane. 

 

 

 

 

 

 

 

 

 

 

 

Figure 12.7: The transformation z = Et(w,k) for 0 ≤ k ≤ 1, Mapping C 3.1
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Limiting cases: 

For k → 1 the width of the half strip in the z-plane is decreasing. In the limit k = 1 it is 

obtained that K E'( ) ' ( )1 1
2 2

0− = − =
π π  and that the point D coincides with point C. 

 

  E w k wt ( , ) sin= =1          (60) 

 

When k decreases, the half strip becomes wider and wider. For k = 0 finally K’(0) = ∞ 

and E’(0) = 1. Point D moves in the z-plane to ∞ (Figure 12.8b). 

 

  E w k wt ( , )= =0          (61) 

 

 

 

 

 

 

 

 

 

 

 

Figure 12.8: Limiting values of the transformation z = Et(w,k) 

A A

B B
EC=D C

π /2

z z

a) k = 1 b) k = 0

D=E

1
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As Et (z,k) differs from Ea (z,k) only by the pre-transformation with the sine function, it 

follows that Ea and Et have identical boundaries in the z-plane (Figure 12.9b). Only the 

potential distribution on the boundary is different. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12.9: The transformation z = Ea(w,k) for 0 ≤ k ≤ 1, Mapping A 10 

       b = E(k), h = K'(k) –E'(k)
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A
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D

K

w

z

A

A

B
C

D

E

K'-E'

a) b)

K'

For the limiting cases k = 1 and k = 0 therefore the same is found: 

 

  E w k wa ( , )= =1          (62) 

  E w k wa ( , ) arcsin= =0         (63) 

 

Figure 12.10 shows the transformation with Ee (w,k) for the I. quadrant of the w-plane. 

In the limiting cases k = 1 and k = 0 again Figure 12.8 is valid with appropriately 

changed distribution of the potential (the assignment of potential lines and field lines, 

which was chosen in Figure 12.8 and Figure 12.10 is arbitrary and can as well be the 

other way round). 

 

  E w k we ( , ) tanh= =1          (64) 

  E w k we ( , )= =0          (65) 

 

 

 

 

 

 

 

 

Figure 12.10: The transformation z = Ee(w,k) for 0 ≤ k ≤ 1, Mapping U 5
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zz z

zz z

zz z

zz z

zz z

k = 1

k  = 0

0 < k < 1

k = jk0

k > 1

E  (w,k)a E  (w,k)t E  (w,k)e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 12.1: General survey over the elliptic integral of the second kind  
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12.3 Jacobi’s Zeta Function; the Functions B(w,k) and 

 D(w,k) 

 

By linear combination of the elliptic integrals of the first and second kinds and of other 

rational functions it is possible to produce a variety of different other functions. In order 

to shorten the notation of equations, and also because they were used by various other 

authors, this book uses from these functions Z (w,k), B (w,k) and D (w,k). 

 

Jacobi’s Zeta function is defined by 

 

  Z w k Z w k E w k w E k
K ke e( , ) ( , ) ( , ) ( )

( )
= = −       (66) 

 

in the elliptic form. In analogy to Eq. 16 - 18 the trigonometric form is found 

 

  Z w k E w k F w k E k
K kt t t( , ) ( , ) ( , ) ( )

( )
= −        (67) 

 

and the algebraic form  

 

  Z w k E w k F w k E k
K ka a a( , ) ( , ) ( , ) ( )

( )
= −       (68) 

 

The conversion is done by: 
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  Z w k Z F w k kt e t( , ) [ ( , ), ]=         (69) 

  Z w k Z w ka t( , ) (arcsin , )=         (70) 

  { }Z w k Z sn w k ke t( , ) arcsin[ ( , )],=        (71) 

  Z w k Z F w ka e a( , ) [ ( ), ]=         (72) 

  Z w k Z sn w k ke a( , ) [ ( , ), ]=         (73) 

  Z w k Z w kt a( , ) (sin , )= .        (74) 

 

Figure 12.11 shows the transformation with Ze (w,k), Figure 12.12 that with Zt (w,k) and 

Figure 12.13 that with Za (w,k). 

 

Furthermore holds: 

 

 Z w k dn w k E k
K k

dwe

w

( , ) ( , ) ( )
( )

= −
⎡

⎣
⎢

⎤

⎦
⎥∫ 2

0

       (75) 

 Z w k Z w ke e( , ) ( , )− = −          (76) 

 Z w ke( , )= =0 0           (77) 

 Z w k we( , ) tanh= =1           (78) 

 Z w K k k Z w k k sn w k cn w k dn w ke e[ ( ), ] ( , ) ( , ) ( , ) / ( , )+ = − ⋅ ⋅2     (79) 

 Z w jK k k Z w k j
K k

cn w k dn w k sn w ke e[ ' ( ), ] ( , )
( )

( , ) ( , ) / ( , )+ = − + ⋅
π

2
   (80) 
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Figure 12.11: The transformation z = Ze(w,k) , Mapping E 2, 

 

 with a
1- E K

h=Z ,k
k

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

, a =
2 K
π  and a

1λ = F 1- E K,k
k

⎛ ⎞
⎜ ⎟
⎝ ⎠
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Figure 12.12: The transformation z = Zt(w,k) , Mapping S 2, with 

1
sinB

E K
u

k
⎛ ⎞−

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 

a
2K
π

=       1 Eb 1
k K

= −  

Bu arcsin b=       vD = arcosh(1/k) 

 
h = Zt(uB,k) = Za(b,k)
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Figure 12.13: The transformation z = Za(w,k), Mapping A 11.1, 

 

with 
1

,a
E K

h Z k
k

⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
, 

2
a

K
π

=  and 1 1Bu E K
k

= −  
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The elliptic integral of the second kind can be separated in analogy to 

sin cos2 2 1ϕ ϕ+ = .   

 

2 2

2 2 2 2 2 2
0 0 0

sin cos 1
1 sin 1 sin 1 sin

( , ) ( , ) ( , )t t t

d d d
k k k

D k B k F k

ϕ ϕ ϕϕ ϕϕ ϕ ϕ
ϕ ϕ ϕ

ϕ ϕ ϕ

+ =
− − −

+ =

∫ ∫ ∫
   (81) 

Trigonometric form (Figure 12.14): 

  D w k w
k w

dwt

w

( , ) sin
sin

=
−∫

2

2 2

0
1

       (82) 

  B w k w
k w

dwt

w

( , ) cos
sin

=
−∫

2

2 2

0
1

       (83) 

Algebraic form (Figure 12.15): 

  D w k w

w k w
dwa

w

( , )
( )( )

=
− −∫

2

2 2 2

0
1 1

      (84) 

  B w k
w

k w
dwa

w

( , ) =
−

−∫ 1

1

2

2 2

0

       (85) 

Elliptic form (Figure 12.16): 

  D w k sn w k dwe

w

( , ) ( , )= ∫ 2

0

        (86) 

  B w k cn w k dwe

w

( , ) ( , )= ∫ 2

0

        (87) 
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Figure 12.14 a: The transformation z = Dt(w,k), Mapping U 2 

 

2

( ) ( )K k E kd
k
−

=       2

'( )E ks
k

=  
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Figure 12.14 b: The transformation z = Bt(w,k), Mapping U 1, 

 

2

2

( ) ' ( )E k k K kb
k
−

=       2

'( ) '( )E kh K k
k

= −
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Figure 12.15 a: The transformation z = Da(w,k), Mapping U 2.1, 

 

2

( ) ( )K k E kd
k
−

=       2

'( )E ks
k

=  
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Figure 12.15 b: The transformation z = Ba(w,k), Mapping A 10.2, 

 

 with 2

'E k Kb
k
−

=  and 2

' 'Eh K
k

= −  
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Figure 12.16 a: The transformation z = De(w,k), Mapping U 2.2, 
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Figure 12.16 b: The transformation z = Be(w,k), Mapping U 1.1, 

 

with 2

'E k Kb
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−

=  and 2

' 'Eh K
k

= −  
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Complete integrals: 

 

  D k K k E k
k

( ) ( ) ( )
=

−
2          (88) 

  B k E k k K k
k

( ) ( ) ' ( )
=

− 2

2         (89) 

 

Furthermore holds: 

 

  [ ]D w k
k

F w k E w k( , ) ( , ) ( , )= −
1

2        (90) 

  [ ]B w k
k

E w k k F w k( , ) ( , ) ' ( , )= −
1

2
2       (91) 

 

The function D(w,k) does not yield any topologically novel conformal mappings. Trans-

formations with D(w,k) can always be substituted by transformations with the elliptic 

integral of the second kind E(w,k). This is also immediately evident if Eq. (86) is com-

pared with Eq. (45): The functions sn(w,k) and dn(w,k) in the integrand likewise yield 

similar mappings. 
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12.4 The Elliptic Integral of the Third Kind 

 

The elliptic integral of the third kind is denoted by the capital letter II. There are four 

forms in use: 

 

The algebraic form: 

 

  II t k n dt
nt t k t

a

t

( , , )
( ) ( )( )

=
− − −∫ 1 1 12 2 2 2

0

      (92) 

 

By substituting t = sin ϕ the trigonometric form is found: 

 

  II k n d
n k

t ( , , )
( sin ) sin

ϕ
ϕ

ϕ ϕ

ϕ

=
− −∫ 1 12 2 2

0

      (93) 

 

By substituting t = sn (u,k) and n = [k ⋅ sn (a,k)]2 the elliptic form is found: 

 

  II u k a du
k sn a k sn u ke

u

( , , )
( , ) ( , )

=
− ⋅∫ 1 2 2 2

0

      (94) 

 

The Jacobian form results from the elliptic form with the equation 



12.   Elliptic Integrals 
_____________________________________________________________________________________  

Vs. 1.2 

38

 

  [ ]II u k a cn a,k dn a,k
sn a,k

II u k a uj e( , , ) ( ) ( )
( )

( , , )= −      (95) 

 II u k a k sn a k cn a k dn a k sn u k du
k sn a k sn u kj

u

( , , ) ( , ) ( , ) ( , ) ( , )
( , ) ( , )

=
− ⋅∫2

2

2 2 2

0

1
   (96) 

 

The parameter (or characteristic) n is an arbitrary complex number. Yet for the confor-

mal mappings treated in this book n and a are real numbers for the majority of map-

pings. The mappings usually have a totally different topology in the four regions: 

 

  

( )
( )
( )
( )

I n
II n k
III k n
IV n

<

< <

< <
>

0
0

1
1

2

2
 

 

Those cases, where a is a complex number, are restricted to the special case a = Re{a} + 

jK’(k) for the mappings D 6.2 and A 10.3. 

 

When all four forms of the elliptic integral are used, it is sufficient for the purpose of 

conformal mapping, to restrict n to real numbers in the range 0 < n < k2 and a to real 

numbers in the range 0 < a < K(k). 

 

In common notation, with the complex variable w, follows 

 

 

the algebraic form 
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  II w k n dw

nw w k w
a

w

( , , )
( ) ( )( )

=
− − −∫ 1 1 12 2 2 2

0

     (97) 

 

the trigonometric form 

  II w k n dw
n w k w

t

w

( , , )
( sin ) sin )

=
− −∫ 1 12 2 2

0

     (98) 

 

the elliptic form 

  II w k a dw
k sn a k sn w ke

w

( , , )
( , ) ( , )

=
− ⋅∫ 1 2 2 2

0

      (99) 

 

and the Jacobian form 

 II w k a k sn a k cn a k dn a k sn w k dw
k sn a k sn w kj

w

( , , ) ( , ) ( , ) ( , ) ( , )
( , ) ( , )

=
− ⋅∫2

2

2 2 2

0

1
 (100) 

 

For the conversion of the four forms into each other Table 12.2 can be used with respect 

for the variables together with 

 

 a F n k ka= ( / , )   and  n k sn a,k= 2 2 ( ) .  (101) 

 

The numerical values of the elliptic integrals of the third kind for w complex and n 

complex can be calculated with the subroutines Cpia, Cpit, Cpie and Cpij. 

The complete elliptic integrals of the third kind are: 



12.   Elliptic Integrals 
_____________________________________________________________________________________  

Vs. 1.2 

40

 

 II k n II w k n II w k n II w K k k aa t e( , ) ( , , ) ( , , ) [ ( ), , ]= = = = = =1
2
π   (102) 

 

For 0 < n < k2: 

  II k n K k n
n k n

Z n
k

ka( , ) ( )
( )( )

,= +
− −

⋅
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
1 2    (103) 

  II k a K k sn a k
cn a k dn a k

Z a ke( , ) ( ) ( , )
( , ) ( , )

( , )= + ⋅
⎡

⎣
⎢

⎤

⎦
⎥1    (104) 

 

The numerical values of the complete elliptic integrals of the third kind can be deter-

mined with the subroutine Kep in the appendix. 

 

The Figures 12.17 through 12.20 illustrate the conformal mappings, which belong to the 

four forms of the elliptic integral of the third kind. In Figure 12.17 there is a line dipole 

in point E, in Figure 12.18 there is a line charge in point E. 

 

  

Ea (w,k) 
 

Et (w,k) 
 

Ee (w,k) 

 

Ea (w,k) = 
 

Ea (w,k) 
 

Et (arcsin w,k) 
 

Ee [Fa(w,k),k] 

 

Et (w,k) = 
 

Ea (sin w,k) 
 

Et (w,k) 
 

Ee [Ft(w,k),k] 

 

Ee (w,k) = 
 

Ea [sn(w,k),k] 
 

Et [arcsin {sn(w,k)},k)] 
 

Ee (w,k) 

 

Table 12.2: Conversion formulas for the elliptic integrals of the second kind
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Figure 12.17: The transformation z = Πa(w,k,n) for 0 < n < k2, Mapping U 4.2 

  ( ) 1 , ( , )a
nh K k cZ k k a

k
⎡ ⎤⎛ ⎞

= + = Π⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 1
Du

n
=  

  '( ) , '( )a
nb c K k Z k K k

k
⎡ ⎤⎛ ⎞

= +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

  s = cπ/2 

 with ( ),aa F n k k=     and 

2(1 )( )
nc

n k n
=

− −
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Figure 12.18: The transformation z = Πt(w,k,n) for 0 < n < k2, Mapping U 4.1 

  ( ) 1 , ( , )a
nh K k cZ k k a

k
⎡ ⎤⎛ ⎞

= + = Π⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 

  '( ) , '( )a
nb c K k Z k K k

k
⎡ ⎤⎛ ⎞

= +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

  s = cπ/2 

  ( )cosh 1/d ar n=     c = arcosh (1/k)
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Figure 12.19: The transformation z = Πe(w,k,a) for 0 < a < K(k), Mapping U 4.3 

  ( ), ( ) ( ) ( , )eh c Z a k K k K k k a= + = Π  

  ( )'( ) , '( )
2 ( )e

ab c K k Z a k K k
K k
π⎡ ⎤

= + +⎢ ⎥
⎣ ⎦

  s = cπ/2 

  ( , )
( , ) ( , )

sn a kc
cn a k dn a k

=  
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Figure 12.20: The transformation z = Πj(w,k,a) for 0 < a < K(k), Mapping U 3 

   

( ), ( )eh Z a k K k=  

  ( )'( ) ,
2 ( )e

ab K k Z a k
K k
π

= +  
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Special values: 

 

tΠ (w,0,0) = w        (105) 

1 sin( ,0) ln
cost

wF w
w

+⎛ ⎞= ⎜ ⎟
⎝ ⎠

      (106) 

1 1 sin 1 sin( ,1, ) ln ln
1 cos 2 1 sint

w n n ww n
n w n w

⎡ ⎤⎛ ⎞+ +⎛ ⎞Π = −⎢ ⎥⎜ ⎟⎜ ⎟− −⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
  (107) 

If 1arcsin
1 '

w
k

=
+

  then  ( )( , )
2t

K kF w k =   (108) 

and  ( ) 1 '( , )
2t

E k kE w k + −
=  (109) 

( )1,t nΠ = ∞         (110) 

( ), ,0 ( , )t tw k F w kΠ =       (111) 

( )
2 2

2 2

( , ) 1 sin, ,1 ( , ) tan
' '

t
t t

E w k k ww k F w k w
k k

⎛ ⎞−
Π = − + ⎜ ⎟⎜ ⎟

⎝ ⎠
  (112) 

( )
2

2
2 2 2

1 sin cos, , ( , )
' 1 sin

t t
k w ww k k E w k

k k w

⎡ ⎤
Π = −⎢ ⎥

−⎢ ⎥⎣ ⎦
   (113) 

If 2 1k = −   then '( ) 2 ( )K k K k=     (114) 

If 3 2 2k = −   then '( ) 2 ( )K k K k=     (115) 

If 3 1
2 2

k −
=   then '( ) 3 ( )K k K k=     (116) 

    and ( ) 1( ) 1
24 3 ( ) 3

K kE k
K k
π ⎛ ⎞= + +⎜ ⎟

⎝ ⎠
  (117) 

    and 3 '( ) 1'( ) 1
4 '( ) 2 3

K kE k
K k
π ⎛ ⎞= + −⎜ ⎟

⎝ ⎠
  (118) 
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13. Theta Functions 

 
Theta functions are solutions of the one-dimensional heat transfer equation in physics:  

 

a z t
z

z t
t

∂ ϑ
∂

∂ϑ
∂

2

2
( , ) ( , )

=               (1) 

 

If in a very large isotropic, solid body with the specific thermal conductivity a that 

extends from z = 0 to z = π, at the time t = 0 in the center at z = π/2 a high temperature 

ϑ is abruptly generated (Dirac delta function δ) 

 

( , 0) ( / 2)z t zϑ π δ π= = − ,     (2) 

 

then the heat transfer equation yields as the solution under the assumption that the 

boundaries at z = 0 and at z = π have constant temperature ϑ = 0, the series 

 

ϑ1
1 4 1

0

2 1 2 1( , ) ( ) sin[( ) ]/ ( )z q q q n zn n n

n

= − ++

=

∞

∑              (3) 

with 

   q e a t= −4  .      (4) 

 

The series is found elementarily by first solving the differential equation via product 

solution 

ϑ( , ) exp( ) sin( )z t b n a t nzn

n

= −
=

∞

∑ 2

1

     (5) 

 

and afterwards by calculating the Fourier coefficients bn . 

 

If the boundaries of the solid body are isolated, hence ∂ϑ/∂z = 0 at z = 0 and at z = π, 

then this yields the series 
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ϑ4

1

1 2 1 2
2

( , ) ( ) cos( )z q q nzn n

n

= + −
=

∞

∑  .         (6) 

 

Figure 13.1a illustrates at equidistant times m⋅∆t the distribution of the temperature 

ϑ1(z) in the infinite solid body. Figure 13.1b shows the temperature distribution ϑ4(z). 

The above example from physics was chosen, in order to demonstrate that it is possible 

to visualize the course of the Theta functions with real argument. Furthermore it results 

from this that the name of the Theta functions originates from the temperature ϑ. 

 

Two more Theta functions are defined by the series 

 

ϑ2
1 4 1

0

2 2 1( , ) cos[( ) ]/ ( )z q q q n zn n

n

= ++

=

∞

∑                             (7) 

and 

ϑ3

1

1 2 2
2

( , ) cos( )z q q nzn

n

= +
=

∞

∑                    (8) 

 

The Theta functions are defined for arbitrary complex numbers z and q with |q| < 1. 

With the restriction to real numbers q, with 

 

q e= −πτ                    (9) 

and 

τ = K k K k'( ) / ( )              (10) 

 

the relationship with the elliptic functions and the elliptic integrals is found. The 

numerical values of these functions ϑ(z,τ) are computed with the subroutines Theta 1 

through Theta 4. 
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Figure 13.1: Calculation of the temperature distribution ϑ (z,t) with Theta 

          functions
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a) Temperature distribution a
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Figures 13.2 through 13.5 show the conformal mappings that belong to the Theta 

functions. The trigonometric function in the element of the series causes that the 

function is, with respect to the variable z, periodic with periods nπ and n⋅2π 

respectively. 

 

  ϑ1 (z) is an odd Function with the period 2π 

  ϑ2 (z) is an even Function with the period 2π 

  ϑ3 (z) is an even Function with the period π 

  ϑ4 (z) is an even Function with the period π 

 

Because of the exponential function the trace of the boundary within a quarter period 

resembles a logarithmic spiral (Figure 13.6). The functions are quasi periodic with πτ 

and π + πτ, with respect to the variable τ. 

 

( )ϑ πτ ϑ1 1
1 2( ) exp( ( )z
q

j z z+ = −               (11) 

 

If the mapped domain is extended beyond the given region, it is seen that the 

transformation equation becomes infinitely ambiguous, the function has an infinite 

number of branches; the logarithmic spiral can be continued in the direction of 

increasing radii. 
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Figure 13.2: The transformation z = ϑ1(z,τ), with τ = 0,278 
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Figure 13.3: The transformation z = ϑ2(z,τ), with τ = 0,278 
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Figure 13.4: The transformation z = ϑ3(z,τ), with τ = 0,278 
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Figure 13.5: The transformation z = ϑ4(z,τ), with τ = 0,278 
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Figure 13.6: Complete mapping region of the four Theta functions 
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If the trigonometric functions are expressed by exponential functions and if 

expq π
τ

⎛ ⎞= −⎜ ⎟
⎝ ⎠

, it is found that: 

 

ϑ τ πτ π τ π1 4 1 2 1( , ) exp( / ) exp( ( ) ( ) )z j n n j n z jn
n

= − − − + + + +
=−∞

∞

∑          (12) 

 

ϑ τ π τ π τ2 4 1 2 1( , ) exp( / ) exp( ( ) ( ) )z n n j n z
n

= − − + + +
=−∞

∞

∑                             (13) 

 

ϑ τ π τ3
2 2( , ) exp( )z n j nz

n

= − +
=−∞

∞

∑                      (14) 

 

ϑ τ π τ π4
2 2( , ) exp( )z n j nz jn

n

= − + +
=−∞

∞

∑                     (15) 

 

The conversion from one Theta function to another is done by: 

 

ϑ ϑ π1 2 2( ) ( / )z z= − +                   (16) 

 

ϑ ϑ π2 1 2( ) ( / )z z= +                              (17) 

 

ϑ ϑ π3 4 2( ) ( / )z z= +                   (18) 

 

ϑ ϑ π4 3 2( ) ( / )z z= +                              (19) 

 

The values of the functions for z = 0 are of particular importance for many applications: 

 

ϑ τ ϑ τ1 10 0( , ) ( )z = = =                           (20) 
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ϑ τ ϑ τ π2 20 2( , ) ( ) ( ) /z kK k= = =                          (21) 

 

ϑ τ ϑ τ π3 30 2( , ) ( ) ( ) /z K k= = =                         (22) 

 

ϑ τ ϑ τ π4 40 2( , ) ( ) ' ( ) /z k K k= = =             (23) 

 

With the Theta zero-values it is possible to calculate the modulus k of an elliptic 

function for a given aspect ratio τ: 

 

      
2

2

3

(0, )
(0, )

k ϑ τ
ϑ τ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

          (24) 

 

K k( ) ( , )=
π
ϑ τ

2
03

2                             (25) 

 

All elliptic functions can be expressed by Theta functions: 

 

sn z k z
z

( , ) ( ) ( , )
( ) ( , )

=
ϑ τ ϑ τ
ϑ τ ϑ τ

3 1

2 4

                    (26) 

 

cn z k z
z

( , ) ( ) ( , )
( ) ( , )

=
ϑ τ ϑ τ
ϑ τ ϑ τ

4 2

2 4

                    (27) 

 

dn z k z
z

( , ) ( ) ( , )
( ) ( , )

=
ϑ τ ϑ τ
ϑ τ ϑ τ

4 3

3 4

                    (28) 

 

cn z k dn z k
sn z k

k z z
z z

( , ) ( , )
( , )

' ( , ) ( , )
( , ) ( , )

=
ϑ τ ϑ τ
ϑ τ ϑ τ

2 3

1 4

         (29) 

 

sn z k cn z k
dn z k k

z z
z z

( , ) ( , )
( , )

( , ) ( , )
( , ) ( , )

=
1 1 2

3 4

ϑ τ ϑ τ
ϑ τ ϑ τ

        (30) 
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sn z k dn z k
cn z k

z z
z z

( , ) ( , )
( , )

( , ) ( , )
( , ) ( , )

=
ϑ τ ϑ τ
ϑ τ ϑ τ

1 3

2 4

                   (31) 

 

Relation with the elliptic integrals: 

 

d
dz

z Z z k cn z k dn z k
sn z keln ( , ) ( , ) ( , ) ( , )

( , )
ϑ τ1 = +     (32) 

 

d
dz

z Z z k sn z k dn z k
cn z keln ( , ) ( , ) ( , ) ( , )

( , )
ϑ τ2 = −     (33) 

 

d
dz

z Z z k k sn z k cn z k
dn z keln ( , ) ( , ) ( , ) ( , )

( , )
ϑ τ3

2= −     (34) 

 

d
dz

z Z z keln ( , ) ( , )ϑ τ4 =        (35) 

 

∏ =
−

⎛
⎝
⎜

⎞
⎠
⎟

+
⎛
⎝
⎜

⎞
⎠
⎟

+j ez k a
K k

z a

K k
z a

z Z a k( , , ) ln
( )

( ),

( )
( ),

( , )1
2

2

2

4

4

ϑ
π

τ

ϑ
π

τ
         (36) 

 

Because of the term exp (...n2) in the series representation of the Theta functions these 

series converge extremely well. This property can be utilized to derive approximation 

formulas with elementary functions which are of extraordinary accuracy [8]. If only the 

first element of the series in Eq. (8) is taken, then from Eq. (10) and (22) follows: 

 

K k
K k

k
k

( )
' ( )

ln≈
+
−

1 2 2
1π

 for       k ≥
1
2

         (37) 

 

K k
K k k

k

( )
' ( )

ln '
'

≈
+
−

π
2 2
1

  for       k ≤
1
2

                    (38) 
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with the inversion 

 

k

K k
K k

K k
K k

≈

⎛
⎝
⎜

⎞
⎠
⎟ −

⎛
⎝
⎜

⎞
⎠
⎟ +

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

exp ( )
' ( )

exp ( )
' ( )

π

π

2

2

2

   for     K k K k( ) ' ( )≥    (39) 

 

k

K k
K k
K k

K k

'
exp ' ( )

( )

exp ' ( )
( )

≈

⎛
⎝
⎜

⎞
⎠
⎟ −

⎛
⎝
⎜

⎞
⎠
⎟ +

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

π

π

2

2

2

   for     K k K k( ) '( )≤    (40) 

 

and 

 

k

K k
K k

K k
K k

K k
K k

≈

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟ +

⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟ +

⎛

⎝
⎜

⎞

⎠
⎟

4 2 4

2
2

exp '( )
( )

exp '( )
( )

exp '( )
( )

π π

π
             (41) 

 

( )
K k

k

k
k

( ) ln≈
+

+
−

2

1

2 2
12        for     k ≥

1
2

            (42) 

 

( )
K k

k
'( ) ≈

+

2

1
2

π           for     k ≥
1
2

                      (43) 

 

( )
K k

k
( )

'
≈

+

2

1
2

π            for     k ≤
1
2

           (44) 

 

( )
K k

k

k
k

'( )
'

ln '
'

≈
+

+
−

2

1

2 2
12     for      k ≤

1
2

          (45) 
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The relative error of the approximate values determined with these formulas is for k > 

10-5 less than 10-5. 

 

Theta functions can be expressed in terms of an infinite product: 

 

{ } ( ){ }4 2 2 4
1

1

( , ) 2 e sin 1 e 1 2 e cos 2 en n n

n

z z zπτ πτ πτ πτϑ τ
∞

− − − −

=

= − − +∏    (46) 

{ } ( ){ }4 2 2 4
2

1

( , ) 2e cos 1 e 1 2 e cos 2 en n n

n

z z zπτ πτ πτ πτϑ τ
∞

− − − −

=

= − + +∏    (47) 

 

{ }{ }2 (2 1) 2(2 1)
3

1

( , ) 1 e 1 2 e cos(2 ) en n n

n

z zπτ πτ πτϑ τ
∞

− − − − −

=

= − + +∏    (48) 

{ }{ }2 (2 1) 2(2 1)
4

1

( , ) 1 e 1 2 e cos(2 ) en n n

n

z zπτ πτ πτϑ τ
∞

− − − − −

=

= − − +∏    (49) 

 

This notation can be physically interpreted: The logarithm of the Theta functions is the 

complex potential of a double-periodic configuration of equal line charges according to 

Figure 13.7a through 13.7d. In each point z the resulting complex potential w is found 

as the sum of the potentials generated by each single line charge (see Table 3.1) 

w C n zn

n

= ∑ l .                    (50) 

This can be converted into an infinite product: 

w C zn

n

= ∏ln                    (51) 

 

With this example it is evident, why the elements of the series and the product 

respectively are converging so very well: The potential in a point z is essentially due to 

the line charges in the immediate vicinity. Those fractions of the potential, which are 

caused by the remaining line charges, decrease rapidly with increasing distance of this 

charge. Likewise it is evident, why the function increases with increasing imaginary 

part. Because the plane y = 0 is a red field line, all field lines in the upper half plane run 

in the direction +j∞ (Figure 13.8). With each step with the step size τ in the y direction 

the number of field lines increases by those emanating from the newly added line 

charge. Thus the density of the field lines is growing exponentially with increasing y. 
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Figure 13.7:  Allocation of the positive line charges in the z-plane for the 

transformation w = C ln ϑ(z, τ) 
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Figure 13.8:  Field map of those two line charges, which are closest to the origin in 

Figure 13.7 d). The field of the remaining line charges (shown 

dotted) is omitted due to clarity. Because of the periodicity of the 

field in the x direction, all field lines stay within the vertical parallel 

strip of width 1. 

 

z
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14. Applications 

 
Exercise 1: Electric Field Strength 
 

The two dimensional electrostatic field of an inside corner with an opening angle of 60° 

is calculated with the mapping function 3z w= . The bent conducting sheet with the 

potential V = const is transformed into the real axis of the w-plane. 

 

a) Into which points of the z-plane are the points u1 = 0,5, v1 = 0 and u2 = 1, v2 = 0 

mapped, when point u = 1, v = 0 is mapped into x = 1, y = 0? 

b) Sketch the field lines (u=const) and the lines of constant potential (v=const) 

given in the w-plane in the z-plane. 

c) Calculate the distribution of the electric field strength E as a function of x and y. 

 

 

 

 

 

 

 

 

 

Figure 14.1: Exercise 1 

 

Solution: 

a) Insertion of the coordinates into the mapping function 3x jy u jv+ = +  results 

in: 

x1 = 0,794,  y1 = 0 

x2 = 1,26,  y2 = 0 
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Figure 14.2: Solution for Exercise 1b 

 

 

c) The lines v=const are the lines of constant potential. Then it is true that: 

 

0 gradE E v= −
r

 

0( , ) x y
v vE x y E e e
x y

⎛ ⎞∂ ∂
= − +⎜ ⎟∂ ∂⎝ ⎠

r r r  

from ( )3u jv x jy+ = +  follows v = 3x2y2 – y3 

( )2 2
0( , ) 6 3 3x yE x y E xye x y e⎡ ⎤= − + −⎣ ⎦

r r r  

2 2 2 2
0( , ) 3 ( )x yE x y E E E x y= + = +  
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Exercise 2: Ohmic Resistance, Potential Distribution 
 

A sector of an annulus (ri = 1 cm, ra = 10 cm) is cut out from a conductive sheet (con-

ductivity σ = 104 S/m) with thickness d = 1 mm. The sector has electrical contacts at 

both ends, at ϕ = 0° and at ϕ = 45°. Calculate the Ohmic resistance of this configuration 

by conformal mapping with the function w = C1 ln (z/C2). 

 

a) Choose two points of the boundary and determine the constants C1 und C2. 

b) Calculate the Ohmic resistance of this configuration in the w-plane with the 

equation 1 Length in the w planeR
d Width in the w planeσ

−
= ⋅

−
. 

d) Sketch the field lines (u=const) and the lines of constant potential (v=const) in 

the z-plane. 

c) Calculate the distribution of the electric potentials U(w) und U(z). 

d) For which value of ri resp. ra is the Ohmic resistance one half of the value calcu-

lated in b)? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14.3: Exercise 2 
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Solution: 

a) Define the vertices in the z-plane and the sense of circulation. 

b) The sector of the annulus in the z-plane is mapped onto a rectangle in the w-

plane. Location and size of this rectangle in the w-plane can be freely chosen. 2 

points and the sense of circulation are determined: 

 

A(w) = 0 und  D(w) = λ 

 

With this the constants can be calculated: 

 

Point A: 0 = C1 ln (ri/C2) ⇒ C2 = ri 

Point D: λ = C1 ln (ri ejα/ri) ⇒ C1 = λ/(jα) 

In order to get a simple mapping function the freely chosen constant λ is 

changed to λ = α. Insertion into the mapping function results in: 

 

  w = j ln (ri/z) 

 

 

 

 

 

 

 

 

 

Figure 14.4: Exercise 2, solution a, b 

 

Inserting the points B(z) = ra and C(z) = ra ejα reveals that the rectangle has the 

length α and the width ln(ra/ri) in the w-plane. Therefore the Ohmic resistance R 

is: 

 

( )
1

ln /a i

R
d r r

α
σ

= ⋅  
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c) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14.5: Field lines (red) and lines of constant potential (blue) 

 

d) In the w-plane we have a linear distribution of the potential (equation of a 

straight line): 

 

U(u) = U1 + (U2 – U1) u/α. 

  

U(z) is given in polar coordinates. With 2 2r x y= +  and arctan y
x

ϕ =  the 

mapping function is w = φ - j ln (r/ri) and: 

 

  U(φ) = U1 + (U2 – U1) φ/α. 

e) To divide the resistance by two you have to add the same amount of curvilinear 

squares at the inside resp. at the outside of the original sector (parallel connec-

tion): 

 

• R/2 for ra = 10 cm and ri  = 0,1 cm  

• R/2 for ri = 1 cm and ra = 100 cm. 
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Exercise 3: Capacity, Characteristic Impedance 
 

A thin conductive strip of width w = 10 mm runs in a height h = 5 mm parallel to a con-

ductive plane. The strip is completely embedded in a dielectric material with the dielec-

tric constant εr = 2. 

 

 

 

 

 

 

 

 

 

Figure 14.6: Exercise 3 

 

a) How large is the capacity per unit length C'? 

b) How large is the characteristic impedance ZL of this transmission line? 

 

Solution: 

a) According to transformation E 2 the right half of the configuration is mapped 

onto a rectangle with the dimensions K(k) x K'(k). 

 

 

 

 

 

 

 

 

 

Figure 14.7: Mapping E 2 

w

h

εr
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As the capacity has the same value in the z-plane as in the w-plane, it is calcu-

lated in the uniform field of the w-plane: 

 

  C' = 2 ε0 εr K(k)/K'(k) 

 

The factor 2 takes into account the capacity of the left half of the line. As it is 

not possible to calculate the module k directly from h and a, k is determined with 

program E 2 by trial and error: 

 

  k = 0,98963 for h = a = 0,47 

 

The use of Eq. (13.37) yields K(k)/K'(k) = 2,1 and C' = 74,9 pF/m  

(ε0 = 8,854 10-12 F/m). 

 

b) The characteristic impedance ZL of this type of transmission line is 

 

0 '
r

LZ
c C
ε

=  

 

and with c0 = 3 108 m/s the result is ZL = 62,95 Ω. 

 

Exercise 4: Graphical Analysis of the Field Map 
 

Given is the field map of a round conductor in air above a conductive plane resp. one 

half of the field map of a symmetrical two wire line (Figure 14.8). The properties of the 

field shall be determined using this pattern. The diameter of the conductor is 2r0 = 10 

mm. The distance between the center of the conductor and the plane is found by meas-

uring the diameter and the distance to be d = 15 mm. Between the conductor and the 

conductive plane is an RF-voltage of U = 100 V (extreme skin effect). The transmission 

line is terminated with its characteristic impedance. 
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Figure 14.8: Exercise 4, mapping E 1.1 with uC = 0,28 
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a) What is the capacity C' of the transmission line? 

Solution:  0' 31,6 /r
m vC pF m
n u

ε ε ∆
= =

∆
 

with:  ε0 = 8,854 pF/m    εr = 1 

n = 5 (Number of rectangles between conductor and plane) 

m = 20 (Number of rectangles around the conductor) 

∆u/∆v = uC/0,25 = 1,12 (ratio of the sides of the rectangles, same value in 

both planes) 

 

In the uniform field of the w-plane every rectangle is a parallel plate capacitor with the 

capacitance 0 0' 7,9 /r
vC pF m
u

ε ε ∆
= =

∆
. There are n capacitors in series and m capaci-

tors in parallel connection. 

 

b) How large is the characteristic impedance? 

Solution:  0 105,6L
r

Z n uZ
m vε
∆

= = Ω
∆

 

with: Z0 = 377 Ω 

 

c) What is the conductor current I? 

Solution:  I = U/ZL = 947 mA 

 

d) How large is the electric field strength in point A? 

Solution:  20 9,6 /
8A

VE V mm
mm M

= =
⋅

 

  with: M = 2 r0 / 38,4 mm = 0,26 (scaling factor: reality/field map) 

The voltage between two neighboring potential lines is 20 V. The distance is 8 mm in 

the field map and 8 mm x M in reality. 

 

e) Which value has the surface current density in point B? 

Solution:  947 45,5 /
20 4B

I mAK mA mm
m b mm M

= = =
∆ ⋅ ⋅
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The surface current between two neighboring field lines is constant in the whole field 

map. It is ∆I = I/m = 47,35 mA. For the sake of simplicity the assumption is made that 

the surface current density is constant in the small area between two field lines. This 

leads to a surface current density of KB = ∆I/(width of conductor) ∆b. With 4 mm dis-

tance between two field lines, which is measured in the field map, ∆b gets a value of 4 

mm x M = 1,04 mm. 

 

f) Calculate the energy density in point C? 

Solution:  
2

2
0

1 48
2

C
C

E mWS
Z mm

= =    with 20 6
(10 15,5 ) / 2C

V VE
M mm mm mm

= =
+

 

 

g) Which amount of energy is transported in the curvilinear rectangle I and 

which amount of energy is transported in the curvilinear rectangle II? 

Solution:  In all curvilinear rectangles the same amount of power is transported, namely 

47,35 473,5
100

P WP mW
m n

∆ = = =
⋅

 with 1
2

P U I= . 

 

h) Which part of the total power is transported in the total cross-section shown 

in Figure 14.8? 

Solution:  From a total of m x n = 100 curvilinear rectangles are approximately 2 x 45,5 

= 91 shown. Therefore about 91 % of the total power is transported in the 

cross-section shown. The remaining 9 % are distributed over the complete 

infinite half space above the conductive plane outside the drawing area. 
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Elementary und Special Functions 
 
Function                   Mapping Number  

 

1/w   Q1 

wφ   A 1.1 

eφ   B 1 

ln w   H 1 

arcsin   H 1.5 

tanh   E 1 

sin   B 2 

cosh   B 2 

1 w    U 7.1 

1/w2   U 7 

 

 

sn   E 3 

cn   P 4 

Ze   E 2 

Zt   S 2 

Za   A 11.1 

Zt   S 2 

Fa   Q 4 

Ft   I 1.2 

Et   C 3.1 

Function                   Mapping Number 

 

Ea   A 10 

Ee   U 5 

Bt   U 1 

Ba   A 10.2 

Be   U 1.1 

Dt   U 2 

Da   U 2.1  

De   U 2.2 

Πt   U 4.1 

Πa   U 4.2 

Πe   U 4.3 

Πj   U 3 

Λ   C 3.2  

ϑ1   U 6.1 

ϑ2   U 6.2 

ϑ3   U 6.3 

ϑ4   U 6.4 
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Elementary und Special Curves  
 
 

 

Name Mapping Number 

Concentric Circles B1 

Parabolas A 1.2 

Hyperbolas A 1.1 with ϕ = 90° 

Confocal Ellipses B 2 

Confocal Hyperbolas B 2 

Bipolar Coordinate System E 1 

Inverse Ellipses P 1.1 

Cassinian Curves S 1 

Inverse Cassinian Curves P 1 

Lemniscate S 1, Curve through z = 0 

Cardioids U 7 

Maxwell-Curves C 2; D 1.1 for e = 0 

4-Leaf-Roses U 7.1 

Rogowski Profile C 2, Center Line with v = 0,5 

π –Borda Profile N 2.2 

π/2-Borda Profile N 2 

Joukowski Profile R 7.1 with b = 0 

Kármán-Trefftz-Profile R 7.2 with b = 0 

Apollonian Circles E1 
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Group A: One Conducting Boundary with Infinite Extension  
 

A 1 A 2.1 A 3.2 

A

B
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z
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B
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1
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B
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Ellipse  
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A

B C

z
ϕ

 
A
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D E
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B C

z

1
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A 1.2 A 3 A 3.4 
 

A B C

z

 

A

B
C

z

1

1

Kreisbogen, Radius 1  

 

A
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z

1
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r

β

β<  0

 

A 2 A 3.1 A 3.4 

A

B

Cz

D E

h

 

B

C D

z

1

1

Kreisbogen, Radius 1

Ah

 

 
 

A

B

z

1
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β
C

β>  0
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A 3.5 A 3.6 A 3.7 
 

A B
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β
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D E
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1 2
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A

B

C z
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D
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z
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D
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C

z
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C
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D E

h
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D E
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A B
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z
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Group B: One Conducting Boundary with Finite Extension 
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Group E: Two Conducting Boundaries with Finite Extension,  
Symmetrically Arranged, Same Charge, Opposite Polarity 
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16. BASIC-Subroutines 

 
Conformal transformations whose mapping function contain elliptic functions, elliptic 

integrals or theta functions can be calculated using the following subroutines. In the 

program library these subroutines are listed as plain text in the program A_ELLI.bas. 

This chapter is a printout of  A_ELLI.bas. In the individual BASIC mapping programs 

the subroutines are loaded from D_ELLI, the compiled version of A_ELLI.bas. 

 

The sources for the applied algorithms are listed in the comments below. 

 

These subroutines were written at a time, where the PC’s were so slow, that it took 

several minutes to run some of the programs. Therefore they are optimized with respect 

to short runtime. Instead of e.g. C1^2 they use C1*C1, which is faster (see for instance 

line 285 below) etc. 

 
16.1 Elliptic Functions 
 
16.1.1 Elliptic Function sn (z,k) 
 
195       SUB Csn(U,V,K,X,Y)       ! CALL Scdz 
200        ! 
205        ! - sn MIT KOMPLEXEM ARGUMENT ------- Abramowitz 16.21.2 ---------- 
210        !   EINGABE : u+jv    und   k 
215        !   AUSGABE : x+jy 
220           M=K*K 
225           Kc=SQR(1-M) 
230           CALL Scdz(U,K,K8,E8,S,C,D,Z) 
235           CALL Scdz(V,Kc,K9,E9,S1,C1,D1,Z1) 
240           IF V=K9 THEN 
245               Y=0 
250               IF U=0 THEN 
255                   X=0 
260                   Y=1.E+12 
265               ELSE 
270                   X=1/(K*S) 
275               END IF 
280           ELSE 
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285               Nenn=C1*C1+M*S*S1*S*S1 
290               X=S*D1/Nenn 
295               Y=C*D*S1*C1/Nenn 
300           END IF 
305       SUBEND 
 
16.1.2 Elliptic Function cn (z,k) 
 
3190       SUB Ccn(U,V,K,X,Y)           ! CALL Scdz 
3195        ! 
3200        !   cn mit komplexem Argument         Abramowitz 16.21.3  
3205        !   EINGABE : u+jv    und   k 
3210        !   AUSGABE : x+jy 
3215           M=K*K 
3220           Kc=SQR(1-M) 
3225           CALL Scdz(U,K,K8,E8,S,C,D,Z) 
3230           CALL Scdz(V,Kc,K9,E9,S1,C1,D1,Z1) 
3235           Nenn=C1*C1+M*S*S1*S*S1 
3240           Nenn1=C1*C1+M*S1*S1 
3245           IF Nenn=0 THEN Nenn=1.E-7 
3250           IF Nenn1=0 THEN Nenn1=1.E-7 
3255           X=C*C1/Nenn 
3260           Y=-S*D*S1*D1/Nenn 
3265           IF U=K8 THEN 
3270               X=0 
3275               IF V=K9 THEN 
3280                   Y=-Kc/K 
3285               ELSE 
3290                   Y=-Kc*S1*D1/Nenn1 
3295               END IF 
3300           END IF 
3305           IF V=K9 AND U>0 THEN 
3310               X=0 
3315               IF U=K8 THEN 
3320                   Y=-Kc/K 
3325               ELSE 
3330                   Y=-D/(K*S) 
3335               END IF 
3340           END IF 
3345           IF U<0 THEN X=-X ! 4-Quadranten-Version 
3350           IF U<0 THEN Y=-Y ! 4-Quadranten-Version 
3355       SUBEND 
 
16.1.3 Elliptic Function dn (z,k) 
 
315       SUB Cdn(U,V,K,X,Y)      ! CALL Scdz 
320        ! 
325        ! - dn MIT KOMPLEXEM ARGUMENT ------- Abramowitz 16.21.4 ---------- 
330        !   EINGABE : u+jv    und   k 



16.   BASIC-Subroutines 
_____________________________________________________________________________________  

Vs. 1.1 

3

335        !   AUSGABE : x+jy 
340           M=K*K 
345           Kc=SQR(1-M) 
350           CALL Scdz(U,K,K0,E0,S,C,D,Z) 
355           CALL Scdz(V,Kc,K0,E0,S1,C1,D1,Z1) 
360           Nenn=C1*C1+M*S*S*S1*S1 
365           X=D*C1*D1/Nenn 
370           Y=-M*S*C*S1/Nenn 
375       SUBEND 
 
16.1.4 Zeta Function Za (z,k) 
 
3445       SUB Cza(Rt,It,K,Rz,Iz)       ! CALL Cea+Cfa+Ske 
3450        ! 
3455        !                  EINGABE : K ist Modul k 
3460        !                  ERGEBNIS : Z = Rz + j Iz 
3465        !  Zeta-Funktion,  algebraische Form 
3470           CALL Ske(K,K8,E8) 
3475           Ks=SQR(1-K*K) 
3480           M9=Ks*Ks 
3485           CALL Cea(Rt,It,Ks,1,M9,Re,Ie) 
3490           CALL Cfa(Rt,It,K,Rf,If) 
3495           Rz=Re-E8*Rf/K8 
3500           Iz=Ie-E8*If/K8 
3505       SUBEND 
 
16.1.5 Zeta Function Zt (φ,k) 
 
3365       SUB Czt(Phi,Psi,K,Rz,Iz)     ! CALL CE+Cf+Ske 
3370        ! 
3375        !   Zeta-Funktion, trigonometrische Form          
3380        !                  EINGABE : K ist Modul k 
3385        !                  ERGEBNIS : Z = Rz + j Iz 
3390        !                  Abramowitz 17.4.27 
3395           IF Phi=PI/2 AND Psi=0 THEN Phi=PI/2-1.E-7 
3400           CALL Ske(K,K8,E8) 
3405           Ks=SQR(1-K*K) 
3410           M9=Ks*Ks 
3415           CALL Ce(Phi,Psi,Ks,1,M9,Re,Ie) 
3420           CALL Cf(Phi,Psi,K,Rf,If) 
3425           Rz=Re-E8*Rf/K8 
3430           Iz=Ie-E8*If/K8 
3435       SUBEND 
 
16.1.6 Zeta Function Ze (z,k) 
 
385       SUB Cz(U,V,K,X,Y)      ! CALL Scdz 
390        ! 
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395        ! - Zeta-Funktion mit komplexem Argument (elliptische Form) ------- 
400        !   EINGABE : u+jv    und   k   *** Abramowitz 17.4.35/6 ********** 
405        !   AUSGABE : x+jy 
410           M=K*K 
415           Kc=SQR(1-M) 
420           CALL Scdz(U,K,K8,E,S,C,D,Z) 
425           CALL Scdz(V,Kc,K9,E,Ss,Cs,Ds,Zs) 
430           Nenn=1-D*Ss*D*Ss 
435           IF Nenn=0 THEN Nenn=1.E-9 
440           X=Z+M*S*C*D*Ss*Ss/Nenn 
445           Y=-Zs-PI*V/(2*K8*K9)+D*D*Ss*Cs*Ds/Nenn 
450           IF U=0 AND V=K9 THEN Y=1.E+7 
455       SUBEND 
 
16.1.7 Elliptic Functions sn, cn, dn, Ze (x,k) as well as K(k) and E(k) 
 
465       SUB Scdz(X,K,K1,E,S,C,D,Z) 
470        ! **** Abramow. 16.4 / 16.35 / 17.6 * 
475           C0=K 
480           B0=SQR(1-C0*C0) 
485           A1=(1+B0)/2 
490           B1=SQR(B0) 
495           C1=(1-B0)/2 
500           A2=(A1+B1)/2 
505           B2=SQR(A1*B1) 
510           C2=(A1-B1)/2 
515           A3=(A2+B2)/2 
520           B3=SQR(A2*B2) 
525           C3=(A2-B2)/2 
530           A4=(A3+B3)/2 
535           B4=SQR(A3*B3) 
540           C4=(A3-B3)/2 
545           A5=(A4+B4)/2 
550           C5=(A4-B4)/2 
555          ! 
560           K1=PI/(A5+A5) 
565           E=PI*(2-C0*C0-2*C1*C1-4*C2*C2-8*C3*C3-16*C4*C4-
32*C5*C5)/(4*A5) 
570          ! 
575           F5=32*A5*X 
580           F4=(F5+ASN(C5*SIN(F5)/A5))/2 
585           F3=(F4+ASN(C4*SIN(F4)/A4))/2 
590           F2=(F3+ASN(C3*SIN(F3)/A3))/2 
595           F1=(F2+ASN(C2*SIN(F2)/A2))/2 
600           F0=(F1+ASN(C1*SIN(F1)/A1))/2 
605          ! 
610           S=SIN(F0) 
615           C=COS(F0) 
620           D=C/COS(F1-F0) 
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625           IF ABS(X)=K1 THEN D=B0 
630           Z=C1*SIN(F1)+C2*SIN(F2)+C3*SIN(F3)+C4*SIN(F4)+C5*SIN(F5) 
635       SUBEND 
 
16.1.8 Elliptic Functions sn, cn, dn and Ze (z,k) 
 
1655       SUB Cscdz(U,V,K,Rs,Is,Rc,Ic,Rd,Id,Rz,Iz)     ! CALL Scdz 
1660        ! 
1665        ! - sn , cn , dn , Z - mit komplexem Argument 
1670        !   EINGABE : u+jv    und   k 
1675        !   AUSGABE : Re + j Im 
1680           M=K*K 
1685           Kc=SQR(1-M) 
1690           CALL Scdz(U,K,K8,E8,S,C,D,Z) 
1695           CALL Scdz(V,Kc,K9,E9,S1,C1,D1,Z1) 
1700           Nenn=C1*C1+M*S*S1*S*S1 
1705           Nenn1=C1*C1+M*S1*S1 
1710           IF Nenn1=0 THEN Nenn1=1.E-9 
1715           IF Nenn=0 THEN Nenn=1.E-9 
1720           IF S=0 THEN S=1.E-9 
1725           IF K=0 THEN K=1.E-9 
1730          !                              sn 
1735           IF V=K9 THEN 
1740               Is=0 
1745               IF U=0 THEN 
1750                   Rs=1.E+12 
1755               ELSE 
1760                   Rs=1/(K*S) 
1765               END IF 
1770           ELSE 
1775               Rs=S*D1/Nenn 
1780               Is=C*D*S1*C1/Nenn 
1785           END IF 
1790          !                               cn 
1795           Rc=C*C1/Nenn 
1800           Ic=-S*D*S1*D1/Nenn 
1805           IF U=K8 THEN 
1810               Rc=0 
1815               IF V=K9 THEN 
1820                   Ic=-Kc/K 
1825               ELSE 
1830                   Ic=-Kc*S1*D1/Nenn1 
1835               END IF 
1840           END IF 
1845           IF V=K9 AND U>0 THEN 
1850               Rc=0 
1855               IF U=K8 THEN 
1860                   Ic=-Kc/K 
1865               ELSE 
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1870                   Ic=-D/(K*S) 
1875               END IF 
1880           END IF 
1885          !                                dn 
1890           IF V=K9 THEN 
1895               Rd=0 
1900               Id=-C/S 
1905           ELSE 
1910               Rd=D*C1*D1/Nenn 
1915               Id=-M*S*C*S1/Nenn 
1920           END IF 
1925          !                                cz 
1930           Nenn=1-D*S1*D*S1 
1935           IF Nenn=0 THEN Nenn=1.E-9 
1940           Rz=Z+M*S*C*D*S1*S1/Nenn 
1945           Iz=-Z1-PI*V/(2*K8*K9)+D*D*S1*C1*D1/Nenn 
1950       SUBEND 
 
16.2 Elliptic Integrals 
 
16.2.1 Complete Elliptic Integrals K(k) and E(k) 
 
2165       SUB Ske(K,K1,E) 
2170        !-------------- 
2175           DIM A(20),B(20),C(20) 
2180           INTEGER I,J 
2185           IF K=1 THEN 
2190               K1=1.E+10 
2195               E=1 
2200           ELSE 
2205               C(0)=K 
2210               B(0)=SQR(1-C(0)*C(0)) 
2215               A(0)=1 
2220               I=0 
2225               LOOP 
2230                   I=I+1 
2235                   A(I)=(A(I-1)+B(I-1))/2 
2240                   B(I)=SQR(A(I-1)*B(I-1)) 
2245                   C(I)=(A(I-1)-B(I-1))/2 
2250               EXIT IF (I>14) OR ABS(C(I))<1.E-8 
2255               END LOOP 
2260               K1=PI/(2*A(I)) 
2265               E=2 
2270               L=.5 
2275               FOR J=0 TO I 
2280                   L=L+L 
2285                   E=E-L*C(J)*C(J) 
2290               NEXT J 
2295               E=PI/(4*A(I))*E 
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2300           END IF 
2305       SUBEND 
 
16.2.2 Complete Elliptic Integrals K, E, Π, -∞ < kc, p, a, b < +∞ 
 
2980       SUB Kep(Kc0,P0,A0,B0,Cei) 
2985        !                         
2990           Kc=Kc0 
2995           A=A0 
3000           B=B0 
3005           P=P0 
3010           C=12 
3015           Ca=10^(-C/2) 
3020           IF Kc=0 THEN Kc=1.E-12 
3025           D=ABS(Kc) 
3030           M=1 
3035           IF P>0 THEN 
3040               P=SQR(P) 
3045               B=B/P 
3050           ELSE 
3055               F=Kc*Kc 
3060               Q=1-F 
3065               G=1-P 
3070               F=F-P 
3075               Q=(B-A*P)*Q 
3080               P=SQR(F/G) 
3085               A=(A-B)/G 
3090               B=-Q/(G*G*P)+A*P 
3095           END IF 
3100  Mar: F=A 
3105           A=B/P+A 
3110           G=D/P 
3115           B=F*G+B 
3120           B=B+B 
3125           P=G+P 
3130           G=M 
3135           M=Kc+M 
3140        ! 
3145           IF ABS(G-Kc)>G*Ca THEN 
3150               Kc=SQR(D) 
3155               Kc=Kc+Kc 
3160               D=Kc*M 
3165               GOTO Mar 
3170           END IF 
3175           Cei=PI/2*(A*M+B)/(M*M+M*P) 
3180       SUBEND 
 
16.2.3 Elliptic Integral of the First Kind Fa (x,k), Real Argument 
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25       SUB F1(X,K0,F1) 
30        ! 
35        !            BERECHNUNG DES ELLIPTISCHEN INTEGRALS 1.ART:   
F1(X|K) 
40        !            ARGUMENT X, MODUL K, ERGEBNIS F1 
45        !            x = tan(Phi) 
50           K=K0 
55           D=8              ! AUF D STELLEN GENAU 
60           IF X=0 THEN 
65               F1=0 
70           ELSE 
75               IF K=1 THEN K=K-1.E-16 
80               INTEGER B2 
85               B5=ABS(1/X) 
90               B0=SQR(1-K*K) 
95               B1=1 
100               B2=0 
105  L1:      B3=B1*B0 
110               B4=B1 
115               B1=B0+B1 
120               B5=-B3/B5+B5 
125               IF B5=0 THEN B5=SQR(B3)*10^(-D+2) 
130               IF ABS(B4-B0)>10^(-D/2)*B4 THEN L2 
135               GOTO L3 
140  L2:      B0=SQR(B3)*2 
145               B2=B2+B2 
150               IF B5<0 THEN B2=1+B2 
155               GOTO L1 
160  L3:      IF B5<0 THEN B2=1+B2 
165               B3=(ATN(B1/B5)+PI*B2)/B1 
170               F1=B3 
175               IF X<0 THEN F1=-B3 
180           END IF 
185       SUBEND 
 
16.2.4 Elliptic Integral of the First Kind Ft (φ,k), Real Argument 
 
2315       SUB F(Phi,K0,F1) 
2320        !=============== 
2325        !            BERECHNUNG DES ELLIPTISCHEN INTEGRALS 1.ART: 
F1(Phi|k) 
2330        !            ARGUMENT Phi, MODUL k, ERGEBNIS F1 
2335           X=TAN(Phi) 
2340           K=K0 
2345           D=8                                  ! AUF D STELLEN GENAU 
2350           IF X=0 THEN 
2355               F1=0 
2360           ELSE 
2365               IF K=1 THEN K=K-1.E-16 
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2370               INTEGER B2 
2375               B5=ABS(1/X) 
2380               B0=SQR(1-K*K) 
2385               B1=1 
2390               B2=0 
2395  L1:     B3=B1*B0 
2400               B4=B1 
2405               B1=B0+B1 
2410               B5=-B3/B5+B5 
2415               IF B5=0 THEN B5=SQR(B3)*10^(-D+2) 
2420               IF ABS(B4-B0)>10^(-D/2)*B4 THEN L2 
2425               GOTO L3 
2430  L2:     B0=SQR(B3)*2 
2435               B2=B2+B2 
2440               IF B5<0 THEN B2=1+B2 
2445               GOTO L1 
2450  L3:     IF B5<0 THEN B2=1+B2 
2455               B3=(ATN(B1/B5)+PI*B2)/B1 
2460               F1=B3 
2465               IF X<0 THEN F1=-B3 
2470           END IF 
2475       SUBEND 
 
16.2.5 Elliptic Integral of the First Kind Fa (z,k) 
 
5925       SUB Cfa(U,V,K,X,Y)                ! CALL F1 
5930        ! 
5935        !   Ellipt. Integral 1.Art mit komplexem Argument                   
5940        !   EINGABE : u+jv    und   k          Abramowitz 
5945        !   AUSGABE : x+jy            
5950           COMPLEX W1,W2 
5955           IF ABS(V)<1.E-12 THEN V=0 
5960           W1=CMPLX(U,V) 
5965           IF ABS(U)=1 AND V=0 THEN 
5970               W1=W1-1.E-7 
 
5975           END IF 
5980           W2=ASN(W1) 
5985           H=REAL(W2) 
5990           S=IMAG(W2) 
5995           M=K*K 
6000           Ms=1-M 
6005           Kc=SQR(Ms) 
6010           IF ABS(S)>100 THEN S=SGN(S)*100 
6015           IF H=0 THEN 
6020               X=0 
6025               B=SINH(S) 
6030               CALL F1(B,Kc,Y) 
6035               GOTO L1 
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6040           END IF 
6045           IF S=0 THEN 
6050               L=TAN(H) 
6055               B=0 
6060               GOTO L2 
6065           END IF 
6070           H1=H 
6075           IF ABS(H)=PI/2 THEN H1=H-1.E-6 
6080           T1=TAN(H1) 
6085           T2=T1*T1 
6090           IF T2=0 THEN T2=1.E-5 
6095           S1=SIN(H) 
6100           IF S1=0 THEN S1=1.E-5 
6105           P1=1/T2+M*SINH(S)*SINH(S)/(S1*S1)-Ms 
6110           P2=Ms/T2 
6115           X0=P1/2+SQR(P2+P1*P1/4) 
6120           IF X0=0 THEN X0=1.E-8 
6125           L=1/SQR(X0) 
6130           A=(T2*X0-1)/M 
6135           B=SQR(ABS(A)) 
6140  L2: CALL F1(L,K,X) 
6145           CALL F1(B,Kc,Y) 
6150           IF H<0 THEN X=-ABS(X)         ! *** 
6155  L1: SUBEND 
 
16.2.6 Elliptic Integral of the First Kind Ft (φ,k) 
 
1205       SUB Cf(Phi,Psi,K,X,Y)     ! CALL F1 
1210        ! 
1215        !   Ellipt. Integral 1.Art mit komplexem Argument 
1220        !   EINGABE : Phi+j Psi    und   k   *** Abramowitz 17.4.11 
1225        !   AUSGABE : x+jy              *** benoetigt Sub F1(x,k,F1) 
1230           M=K*K 
1235           Ms=1-M 
1240           Kc=SQR(Ms) 
1245           IF ABS(Psi)>100 THEN Psi=SGN(Psi)*100 
1250           IF Phi=0 THEN 
1255               X=0 
1260               Mue=SINH(Psi) 
1265               CALL F1(Mue,Kc,Y) 
1270               GOTO L2 
1275           END IF 
1280           IF Psi=0 THEN 
1285               Lam=ABS(TAN(Phi)) 
1290               Mue=0 
1295               GOTO L1 
1300           END IF 
1305           Phi1=Phi 
1310           IF ABS(Phi)=PI/2 THEN Phi1=Phi-1.E-6 
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1315           Tanu=TAN(Phi1) 
1320           Tanu2=Tanu*Tanu 
1325           IF Tanu2=0 THEN Tanu2=1.E-5 
1330           Sinu=SIN(Phi1) 
1335           IF Sinu=0 THEN Sinu=1.E-5 
1340           P1=1/Tanu2+M*SINH(Psi)*SINH(Psi)/(Sinu*Sinu)-Ms 
1345           P2=Ms/Tanu2 
1350           X0=P1/2+SQR(P2+P1*P1/4) 
1355           IF X0=0 THEN X0=1.E-8 
1360           Lam=1/SQR(X0) 
1365           Arg=(Tanu2*X0-1)/M 
1370           Mue=SQR(ABS(Arg)) 
1375  L1: CALL F1(Lam,K,X) 
1380           CALL F1(Mue,Kc,Y) 
1385           IF Phi<0 THEN X=-ABS(X) 
1390           IF Psi<0 THEN Y=-ABS(Y) 
1395  L2: SUBEND 
 
16.2.7 Elliptic Integral of the Second Kind Ea (z,k) 
 
3640       SUB Cea(U1,V1,Kc0,A0,B0,U,V) 
3645        ! 
3650           COMPLEX Xy,X1,X2,Ff,E3,G,N,T,Q,P,Dd,R,Z 
3655           COMPLEX Y1,Y2,X3,X4,W,Z1,Z2 
3660           Kc=Kc0 
3665           A=A0 
3670           B=B0 
3675           IF V1=0 THEN V1=1.E-7 
3680           Z1=CMPLX(U1,V1) 
3685           Z2=1-Z1*Z1 
3690           R2=REAL(Z2) 
3695           I2=IMAG(Z2) 
3700           IF R2=0 AND I2=0 THEN 
3705               Z2=Z2+1.E-7 
3710           END IF 
3715           W=Z1/SQR(Z2) 
3720           X=REAL(W) 
3725           Y=IMAG(W) 
3730        !        BERECHNUNG DES ELLIPT. INTEGRALS 2.ART:   E1(u1+jv1|kc) 
3735        !        PARAMETER      a, b 
3740        !                       a=1     b=kc*kc 
3745        !        ERGEBNIS:      u+jv 
3750        !        MODUL:         kc = SQR(1-k^2) 
3755        ! 
3760           X=ABS(X) 
3765           IF Kc=0 THEN Kc=Kc-1.E-7 
3770           INTEGER I,J,L,Genau 
3775           DIM D1(20),D2(20) 
3780           Genau=8 
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3785           Cc=10^(-Genau) 
3790           Sy=SGN(Y) 
3795           Y=ABS(Y) 
3800           Xy=CMPLX(X,Y) 
3805           C=REAL(Xy*Xy) 
3810           E2=IMAG(Xy*Xy) 
3815           D=Kc*Kc 
3820           K=1-D 
3825           IF C=-1 THEN C=C+1.E-12 
3830           E1=1+C 
3835           X1=CMPLX(1+C*D,D*E2) 
3840           X2=CMPLX(E1,E2) 
3845           F1=REAL(X1/X2) 
3850           F2=ABS(X2*X2) 
3855           F2=-K*X*Y*2/F2 
3860           Ff=CMPLX(F1,F2) 
3865           D3=SQR((ABS(Ff)+ABS(REAL(Ff)))/2) 
3870           IF D3=0 THEN D3=1.E-7 
3875           D4=IMAG(Ff)/(D3+D3) 
3880           IF F1<0 THEN 
3885               F1=D3 
3890               D3=-D4 
3895               D4=-F1 
3900           END IF 
3905           IF K<0 THEN 
3910               D3=ABS(D3) 
3915               D4=ABS(D4) 
3920           END IF 
3925           C=1+D3 
3930           E3=CMPLX(E1,E2) 
3935           G=CMPLX(C,D4) 
3940           F1=REAL(E3*G) 
3945           F2=IMAG(E3*G) 
3950           N=CMPLX(F1,F2) 
3955           Rn=REAL(N) 
3960           In=IMAG(N) 
3965           IF Rn=0 AND In=0 THEN 
3970               N=N+1.E-7 
3975           END IF 
3980           D1(0)=REAL(Xy/N) 
3985           D2(0)=IMAG(Xy/N) 
3990           H=A-B 
3995           I=1 
4000           D=1 
4005           F=1 
4010           M=1 
4015           Kc=ABS(Kc) 
4020           E=A 
4025           A=B+A 
4030           L=4 
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4035  L1: M1=(Kc+M)/2 
4040           M2=M1*M1 
4045           K=F*K/(4*M2) 
4050           B=E*Kc+B 
4055           E=A 
4060           T=CMPLX(Kc+M*D3,M*D4) 
4065           Q=CMPLX(C,D4) 
4070           F1=REAL(T/Q) 
4075           F2=ABS(Q*Q) 
4080           P=CMPLX(F1/M1,K*D4*2/F2) 
4085           D3=SQR((ABS(P)+ABS(REAL(P)))/2) 
4090           IF D3=0 THEN D3=1.E-7 
4095           D4=IMAG(P)/(D3+D3) 
4100           Dd=CMPLX(D3,D4) 
4105           X4=CMPLX(X,Y) 
4110           F1=REAL(Dd*X4) 
4115           F2=IMAG(Dd*X4) 
4120           X=ABS(F1) 
4125           Y=ABS(F2) 
4130           A=B/M1+A 
4135           L=L*2 
4140           C=1+D3 
4145           D=K*D/2 
4150           X3=CMPLX(X,Y) 
4155           E1=REAL(X3*X3) 
4160           E2=IMAG(X3*X3) 
4165           K=K*K 
4170           Q=CMPLX(C,D4) 
4175           R=CMPLX(E1*M2+1,E2*M2) 
4180           F1=REAL(Q*R) 
4185           F2=IMAG(Q*R) 
4190           Z=CMPLX(D*X,D*Y) 
4195           N=CMPLX(F1,F2) 
4200           Rn=REAL(N) 
4205           In=IMAG(N) 
4210           IF Rn=0 AND In=0 THEN 
4215               N=N+1.E-7 
4220           END IF 
4225           D1(I)=REAL(Z/N) 
4230           D2(I)=IMAG(Z/N) 
4235           IF K>Cc THEN 
4240               Kc=SQR(M*Kc) 
4245               F=M2 
4250               M=M1 
4255               I=1+I 
4260               GOTO L1 
4265       ! 
4270           END IF 
4275           F1=0 
4280           F2=0 
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4285           FOR J=I TO 0 STEP -1 
4290               F1=D1(J)+F1 
4295               F2=D2(J)+F2 
4300           NEXT J 
4305           X=M1*X 
4310           Y=M1*Y 
4315           Y1=CMPLX(1-Y,X) 
4320           Y2=CMPLX(1+Y,-X) 
4325           E1=REAL(Y1/Y2) 
4330           E2=ABS(Y2*Y2) 
4335           E2=X*2/E2 
4340           D=A/(M1*L) 
4345           IF E1=0 THEN 
4350               U=PI/2 
4355           ELSE 
4360               A=E2/E1 
4365               U=ATN(A) 
4370               IF A<0 THEN U=PI+U 
4375           END IF 
4380           A=D*Sy/2 
4385           U=D*U+F1*H 
4390           V=(-1-LOG(E1*E1+E2*E2))*A+F2*H*Sy+A 
4395           IF U1<0 THEN U=-U 
4400  Ende: SUBEND 
 
16.2.8 Elliptic Integral of the Second Kind Et (φ,k) 
 
4410       SUB Ce(Phi,Psi,Kc0,A0,B0,U,V) 
4415        ! 
4420           COMPLEX Xy,X1,X2,Ff,E3,G,N,T,Q,P,Dd,R,Z 
4425           COMPLEX Y1,Y2,X3,X4,W,S 
4430           Kc=Kc0 
4435           A=A0 
4440           B=B0 
4445           IF ABS(Phi)-PI/2<1.E-5 AND Psi=0 THEN 
4450               Phi=Phi-1.E-5 
4455           END IF 
4460           S=CMPLX((Phi),(Psi)) 
4465           W=TAN(S) 
4470           X=ABS(REAL(W)) 
4475           Y=IMAG(W) 
4480        !        Berechnung des ellipt. Integrals 2.Art:   E1(Phi+jPsi|kc) 
4485        !        wenn           a=1     b=kc*kc 
4490        !        Parameter      a, b 
4495        !        Ergebnis:      u+jv 
4500        !        kompl. Modul:  kc = SQR(1-k^2) 
4505           IF Kc=0 THEN Kc=Kc-1.E-7 
4510           INTEGER I,J,L,Genau 
4515           DIM D1(20),D2(20) 
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4520           Genau=8 
4525           Cc=10^(-Genau) 
4530           Sy=SGN(Y) 
4535           Y=ABS(Y) 
4540           Xy=CMPLX(X,Y) 
4545           C=REAL(Xy*Xy) 
4550           E2=IMAG(Xy*Xy) 
4555           D=Kc*Kc 
4560           K=1-D 
4565           IF C=-1 THEN C=C+1.E-12 
4570           E1=1+C 
4575           X1=CMPLX(1+C*D,D*E2) 
4580           X2=CMPLX(E1,E2) 
4585           F1=REAL(X1/X2) 
4590           F2=ABS(X2*X2) 
4595           F2=-K*X*Y*2/F2 
4600           Ff=CMPLX(F1,F2) 
4605           N1=SQR((ABS(Ff)+ABS(REAL(Ff)))/2) 
4610           IF N1=0 THEN N1=1.E-7 
4615           N2=IMAG(Ff)/(N1+N1) 
4620           IF F1<0 THEN 
4625               F1=N1 
4630               N1=-N2 
4635               N2=-F1 
4640           END IF 
4645           IF K<0 THEN 
4650               N1=ABS(N1) 
4655               N2=ABS(N2) 
4660           END IF 
4665           C=1+N1 
4670           E3=CMPLX(E1,E2) 
4675           G=CMPLX(C,N2) 
4680           F1=REAL(E3*G) 
4685           F2=IMAG(E3*G) 
4690           N=CMPLX(F1,F2) 
4695           Ah=ABS(N) 
4700           IF Ah=0 THEN 
4705               N=N+1.E-7 
4710           END IF 
4715           D1(0)=REAL(Xy/N) 
4720           D2(0)=IMAG(Xy/N) 
4725           H=A-B 
4730           I=1 
4735           D=1 
4740           F=1 
4745           M=1 
4750           Kc=ABS(Kc) 
4755           E=A 
4760           A=B+A 
4765           L=4 
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4770  L1: M1=(Kc+M)/2 
4775           M2=M1*M1 
4780           K=F*K/(4*M2) 
4785           B=E*Kc+B 
4790           E=A 
4795           T=CMPLX(Kc+M*N1,M*N2) 
4800           Q=CMPLX(C,N2) 
4805           F1=REAL(T/Q) 
4810           F2=ABS(Q*Q) 
4815           P=CMPLX(F1/M1,K*N2*2/F2) 
4820           N1=SQR((ABS(P)+ABS(REAL(P)))/2) 
4825           IF N1=0 THEN N1=1.E-7 
4830           N2=IMAG(P)/(N1+N1) 
4835           Dd=CMPLX(N1,N2) 
4840           X4=CMPLX(X,Y) 
4845           F1=REAL(Dd*X4) 
4850           F2=IMAG(Dd*X4) 
4855           X=ABS(F1) 
4860           Y=ABS(F2) 
4865           A=B/M1+A 
4870           L=L*2 
4875           C=1+N1 
4880           D=K*D/2 
4885           X3=CMPLX(X,Y) 
4890           E1=REAL(X3*X3) 
4895           E2=IMAG(X3*X3) 
4900           K=K*K 
4905           Q=CMPLX(C,N2) 
4910           R=CMPLX(E1*M2+1,E2*M2) 
4915           F1=REAL(Q*R) 
4920           F2=IMAG(Q*R) 
4925           Z=CMPLX(D*X,D*Y) 
4930           N=CMPLX(F1,F2) 
4935           Ah=ABS(N) 
4940           IF Ah=0 THEN 
4945               N=N+1.E-7 
4950           END IF 
4955           D1(I)=REAL(Z/N) 
4960           D2(I)=IMAG(Z/N) 
4965           IF K>Cc THEN 
4970               Kc=SQR(M*Kc) 
4975               F=M2 
4980               M=M1 
4985               I=1+I 
4990               GOTO L1 
4995       !........... 
5000           END IF 
5005           F1=0 
5010           F2=0 
5015           FOR J=I TO 0 STEP -1 
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5020               F1=D1(J)+F1 
5025               F2=D2(J)+F2 
5030           NEXT J 
5035           X=M1*X 
5040           Y=M1*Y 
5045           Y1=CMPLX(1-Y,X) 
5050           Y2=CMPLX(1+Y,-X) 
5055           E1=REAL(Y1/Y2) 
5060           E2=ABS(Y2*Y2) 
5065           E2=X*2/E2 
5070           D=A/(M1*L) 
5075           IF E1=0 THEN 
5080               U=PI/2 
5085           ELSE 
5090               A=E2/E1 
5095               U=ATN(A) 
5100               IF A<0 THEN U=PI+U 
5105           END IF 
5110           A=D*Sy/2 
5115           U=D*U+F1*H 
5120           V=(-1-LOG(E1*E1+E2*E2))*A+F2*H*Sy+A 
5125           IF Phi<0 THEN U=-U 
5130  Ende: SUBEND 
 
16.2.9 Elliptic Integral of the Second Kind Ee (z,k) 
 
3515       SUB Cee(U,V,K,Re,Ie)         ! CALL Scdz 
3520        ! 
3525        !   ellipt. Integral 2.Art, elliptische Form 
3530        !   EINGABE : u+jv    und   k       Abramowitz 17.4.28 
3535        !   AUSGABE : Re + j Ie 
3540           M=K*K 
3545           Kc=SQR(1-M) 
3550           CALL Scdz(U,K,K8,E8,S,C,D,Z) 
3555           CALL Scdz(V,Kc,K9,E9,Ss,Cs,Ds,Zs) 
3560           Nenn=1-D*Ss*D*Ss 
3565           IF Nenn=0 THEN Nenn=1.E-12 
3570           X=Z+M*S*C*D*Ss*Ss/Nenn 
3575           Y=-Zs-PI*V/(2*K8*K9)+D*D*Ss*Cs*Ds/Nenn 
3580           Re=X+U*E8/K8 
3585           Ie=Y+V*E8/K8 
3590           IF U=0 AND V=K9 THEN 
3595               Re=1.E+9 
3600               Ie=1.E+9 
3605           END IF 
3610           IF U=K8 AND V=K9 THEN !**   ? 
3615               Re=E8 
3620               Ie=K9-E9 
3625           END IF 
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3630       SUBEND 
 
16.2.10 Elliptic Integral of the Second Kind Ea (z,kc,a,b), 

   Ba (z,k,a = 1,b = 0), Da (z,k,a = 0,b = 1) 
 
5140       SUB Cea4(U1,V1,Kc0,A0,B0,U,V)     ! CALL Ske 
5145        ! 
5150           COMPLEX Xy,X1,X2,Ff,E3,G,N,T,Q,P,Dd,R,Z 
5155           COMPLEX Y1,Y2,X3,X4,W,Z1,Z2 
5160           Kc=Kc0 
5165           A=A0 
5170           B=B0 
5175           IF V1=0 THEN V1=1.E-7 
5180           Z1=CMPLX(U1,V1) 
5185           Z2=1-Z1*Z1 
5190           A2=ABS(Z2) 
5195           IF A2=0 THEN 
5200               Z2=Z2+1.E-7 
5205           END IF 
5210           W=Z1/SQR(Z2) 
5215           X=ABS(REAL(W)) 
5220           Y=IMAG(W) 
5225        !        BERECHNUNG DES ELLIPT. INTEGRALS 2.ART:   E1(u1+jv1|kc) 
5230        !        PARAMETER      a, b 
5235        !                       a=1     b=kc*kc 
5240        !        ERGEBNIS:      u+jv 
5245        !        MODUL:         kc = SQR(1-k^2) 
5250        ! 
5255           IF Kc=0 THEN Kc=Kc-1.E-7 
5260           INTEGER I,J,L,Genau 
5265           DIM D1(20),D2(20) 
5270           Genau=8 
5275           Cc=10^(-Genau) 
5280           Sy=SGN(Y) 
5285           Y=ABS(Y) 
5290           Xy=CMPLX(X,Y) 
5295           C=REAL(Xy*Xy) 
5300           E2=IMAG(Xy*Xy) 
5305           D=Kc*Kc 
5310           K=1-D 
5315          ! 
5320           IF A0=1 AND B0=0 THEN 
5325               CALL Ske(Kc,K9,E9) 
5330               B1=E9/K-K9 
5335           END IF 
5340          ! 
5345           IF C=-1 THEN C=C+1.E-12 
5350           E1=1+C 
5355           X1=CMPLX(1+C*D,D*E2) 
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5360           X2=CMPLX(E1,E2) 
5365           F1=REAL(X1/X2) 
5370           F2=ABS(X2*X2) 
5375           F2=-K*X*Y*2/F2 
5380           Ff=CMPLX(F1,F2) 
5385           N1=SQR((ABS(Ff)+ABS(REAL(Ff)))/2) 
5390           IF N1=0 THEN N1=1.E-7 
5395           N2=IMAG(Ff)/(N1+N1) 
5400           IF F1<0 THEN 
5405               F1=N1 
5410               N1=-N2 
5415               N2=-F1 
5420           END IF 
5425           IF K<0 THEN 
5430               N1=ABS(N1) 
5435               N2=ABS(N2) 
5440           END IF 
5445           C=1+N1 
5450           E3=CMPLX(E1,E2) 
5455           G=CMPLX(C,N2) 
5460           F1=REAL(E3*G) 
5465           F2=IMAG(E3*G) 
5470           N=CMPLX(F1,F2) 
5475           Ah=ABS(N) 
5480           IF Ah=0 THEN 
5485               N=N+1.E-7 
5490           END IF 
5495           D1(0)=REAL(Xy/N) 
5500           D2(0)=IMAG(Xy/N) 
5505           H=A-B 
5510           I=1 
5515           D=1 
5520           F=1 
5525           M=1 
5530           Kc=ABS(Kc) 
5535           E=A 
5540           A=B+A 
5545           L=4 
5550  L1: M1=(Kc+M)/2 
5555           M2=M1*M1 
5560           K=F*K/(4*M2) 
5565           B=E*Kc+B 
5570           E=A 
5575           T=CMPLX(Kc+M*N1,M*N2) 
5580           Q=CMPLX(C,N2) 
5585           F1=REAL(T/Q) 
5590           F2=ABS(Q*Q) 
5595           P=CMPLX(F1/M1,K*N2*2/F2) 
5600           N1=SQR((ABS(P)+ABS(REAL(P)))/2) 
5605           IF N1=0 THEN N1=1.E-7 
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5610           N2=IMAG(P)/(N1+N1) 
5615           Dd=CMPLX(N1,N2) 
5620           X4=CMPLX(X,Y) 
5625           F1=REAL(Dd*X4) 
5630           F2=IMAG(Dd*X4) 
5635           X=ABS(F1) 
5640           Y=ABS(F2) 
5645           A=B/M1+A 
5650           L=L*2 
5655           C=1+N1 
5660           D=K*D/2 
5665           X3=CMPLX(X,Y) 
5670           E1=REAL(X3*X3) 
5675           E2=IMAG(X3*X3) 
5680           K=K*K 
5685           Q=CMPLX(C,N2) 
5690           R=CMPLX(E1*M2+1,E2*M2) 
5695           F1=REAL(Q*R) 
5700           F2=IMAG(Q*R) 
5705           Z=CMPLX(D*X,D*Y) 
5710           N=CMPLX(F1,F2) 
5715           Ah=ABS(N) 
5720           IF Ah=0 THEN 
5725               N=N+1.E-7 
5730           END IF 
5735           D1(I)=REAL(Z/N) 
5740           D2(I)=IMAG(Z/N) 
5745           IF K>Cc THEN 
5750               Kc=SQR(M*Kc) 
5755               F=M2 
5760               M=M1 
5765               I=1+I 
5770               GOTO L1 
5775       ! 
5780           END IF 
5785           F1=0 
5790           F2=0 
5795           FOR J=I TO 0 STEP -1 
5800               F1=D1(J)+F1 
5805               F2=D2(J)+F2 
5810           NEXT J 
5815           X=M1*X 
5820           Y=M1*Y 
5825           Y1=CMPLX(1-Y,X) 
5830           Y2=CMPLX(1+Y,-X) 
5835           E1=REAL(Y1/Y2) 
5840           E2=ABS(Y2*Y2) 
5845           E2=X*2/E2 
5850           D=A/(M1*L) 
5855           IF E1=0 THEN 
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5860               U=PI/2 
5865           ELSE 
5870               A=E2/E1 
5875               U=ATN(A) 
5880               IF A<0 THEN U=PI+U 
5885           END IF 
5890           A=D*Sy/2 
5895           U=D*U+F1*H 
5900           V=(-1-LOG(E1*E1+E2*E2))*A+F2*H*Sy+A+B1 
5905           IF U1<0 THEN U=-U 
5910           IF V1<0 THEN V=V-B1-B1 
5915  Ende: SUBEND 
 
16.2.11 Elliptic Integral of the Third Kind Πa (z,k,n) 
 
2680       SUB Cpia(Rt,It,L8,Rn,In,X,Y)        ! CALL Ske+Cscdz+Ce+Theta4 
2685        ! 
2690        !   PI , algebraische Form, n komplex                       
2695        !   EINGABE : u+jv und k = L8        Abramowitz 17.7.3, Lawden S.68  
2700        !   AUSGABE : x+jy                                           
2705           COMPLEX Ltm,Ltp,Tm,Tp,Cn,Q,Scd,Cz,Cu,Z,W1,W2 
2710           K=L8 
2715           IF K=1 THEN K=1-1.E-8 
2720           IF K>1 OR K<0 THEN L1 
2725           Kc=SQR(1-K*K) 
2730          ! 
2735           W1=CMPLX(Rt,It) 
2740           Rw=ABS(REAL(W1)) 
2745           Iw=IMAG(W1) 
2750           IF Rw=1 AND Iw=0 THEN 
2755               W1=W1+1.E-7 
2760           END IF 
2765           W2=ASN(W1) 
2770           U=REAL(W2) 
2775           V=IMAG(W2) 
2780          ! 
2785           Cn=CMPLX(Rn,In) 
2790           Q=ASN(SQR(Cn)/K) 
2795          ! 
2800           CALL Ske(K,K8,E8) 
2805           CALL Ske(Kc,K9,E9) 
2810           Pk=PI/(K8+K8) 
2815           Rq=REAL(Q) 
2820           Iq=ABS(IMAG(Q)) 
2825           CALL Ce(Rq,Iq,Kc,1,1,Rf,If) 
2830          ! 
2835           CALL Cscdz(Rf,If,L8,Rs,Is,Rc,Ic,Rd,Id,Rz,Iz) 
2840           Cz=CMPLX(Rz,Iz) 
2845           Scd=CMPLX(Rs,Is)/(CMPLX(Rc,Ic)*CMPLX(Rd,Id)) 



16.   BASIC-Subroutines 
_____________________________________________________________________________________  

Vs. 1.1 

22

2850          ! 
2855           CALL Ce(U,V,Kc,1,1,Uu,Vv) 
2860           Cu=CMPLX(Uu,Vv) 
2865           Tau=K9/K8 
2870          ! 
2875           CALL Theta4(Tau,(Uu+Rf)*Pk,(Vv+If)*Pk,Rtp,Itp) 
2880           CALL Theta4(Tau,(Uu-Rf)*Pk,(Vv-If)*Pk,Rtm,Itm) 
2885           Tp=CMPLX(Rtp,Itp) 
2890           Tm=CMPLX(Rtm,Itm) 
2895           Ap=ABS(Tp) 
2900           IF Ap=0 THEN 
2905               Tp=Tp+1.E-7 
2910           END IF 
2915           Am=ABS(Tm) 
2920           IF Am=0 THEN 
2925               Tm=Tm+1.E-7 
2930           END IF 
2935           Ltp=LOG(Tp) 
2940           Ltm=LOG(Tm) 
2945           Z=Cu+Scd*(.5*(Ltm-Ltp)+Cu*Cz) 
2950           X=REAL(Z) 
2955           Y=IMAG(Z) 
2960  L1: SUBEND 
 
16.2.12 Elliptic Integral of the Third Kind Πt (φ,k,n) 
 
1410       SUB Cpit(U,V,L8,Rn,In,X,Y)     ! CALL Cf+Ske+Scdz+Theta4 
1415        ! 
1420        ! - PI mit komplexem Argument --- n komplex 
1425        ! EINGABE : u+jv und k = L8 *** Abramowitz 17.7.3 + Lawden S.68 
1430        !   AUSGABE : x+jy 
1435           COMPLEX Ltm,Ltp,Tm,Tp,Cn,Q,Scd,Cz,Cu,Z 
1440           K=L8 
1445           IF K=1 THEN K=1-1.E-8 
1450           IF K>1 OR K<0 THEN L1 
1455           Kc=SQR(1-K*K) 
1460          ! 
1465           Cn=CMPLX(Rn,In) 
1470           Q=ASN(SQR(Cn)/K) 
1475          ! 
1480           CALL Ske(K,K8,E8) 
1485           CALL Ske(Kc,K9,E9) 
1490           Pk=PI/(K8+K8) 
1495           Rq=REAL(Q) 
1500           Iq=IMAG(Q) 
1505           CALL Cf(Rq,Iq,L8,Rf,If) 
1510          ! 
1515           CALL Cscdz(Rf,If,L8,Rs,Is,Rc,Ic,Rd,Id,Rz,Iz) 
1520           Cz=CMPLX(Rz,Iz) 
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1525           Scd=CMPLX(Rs,Is)/(CMPLX(Rc,Ic)*CMPLX(Rd,Id)) 
1530          ! 
1535           CALL Cf(U,V,K,Uu,Vv) 
1540           Cu=CMPLX(Uu,Vv) 
1545           Tau=K9/K8 
1550          ! 
1555           CALL Theta4(Tau,(Uu+Rf)*Pk,(Vv+If)*Pk,Rtp,Itp) 
1560           CALL Theta4(Tau,(Uu-Rf)*Pk,(Vv-If)*Pk,Rtm,Itm) 
1565           Tp=CMPLX(Rtp,Itp) 
1570           Tm=CMPLX(Rtm,Itm) 
1575           Ap=ABS(Tp) 
1580           IF Ap=0 THEN 
1585               Tp=Tp+1.E-7 
1590           END IF 
1595           Am=ABS(Tm) 
1600           IF Am=0 THEN 
1605               Tm=Tm+1.E-7 
1610           END IF 
1615           Ltp=LOG(Tp) 
1620           Ltm=LOG(Tm) 
1625           Z=Cu+Scd*(.5*(Ltm-Ltp)+Cu*Cz) 
1630           X=REAL(Z) 
1635           Y=IMAG(Z) 
1640  L1: SUBEND 
 
16.2.13 Elliptic Integral of the Third Kind Πe (z,k,a) 
 
1960       SUB Cpie(U,V,L8,Ra,Ia,X,Y)     ! CALL Cscdz+Ske+Theta4 
1965        ! 
1970        ! - PI MIT KOMPLEXEM ARGUMENT --- a komplex --- 31.7.92 
1975        ! EINGABE : u+jv und k = L8   und  Re a + j Im a 
1980        !   AUSGABE : x+jy          ***        Pi (u,a)     
1985           COMPLEX Ltm,Ltp,Tm,Tp,Cz,Cu,Z,Scd 
1990           K=L8 
1995           IF K=1 THEN K=1-1.E-8 
2000           IF K>1 OR K<0 THEN Mcpie 
2005           Kc=SQR(1-K*K) 
2010          ! 
2015           CALL Ske(K,K8,E8) 
2020           CALL Ske(Kc,K9,E9) 
2025           Pk=PI/(K8+K8) 
2030          ! 
2035           CALL Cscdz(Ra,Ia,L8,Rs,Is,Rc,Ic,Rd,Id,Rz,Iz) 
2040           Scd=CMPLX(Rs,Is)/(CMPLX(Rc,Ic)*CMPLX(Rd,Id)) 
2045           Cz=CMPLX(Rz,Iz) 
2050          ! 
2055           Cu=CMPLX(U,V) 
2060           Tau=K9/K8 
2065          ! 
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2070           CALL Theta4(Tau,(U+Ra)*Pk,(V+Ia)*Pk,Rtp,Itp) 
2075           CALL Theta4(Tau,(U-Ra)*Pk,(V-Ia)*Pk,Rtm,Itm) 
2080           Tp=CMPLX(Rtp,Itp) 
2085           Tm=CMPLX(Rtm,Itm) 
2090           Ap=ABS(Tp) 
2095           IF Ap=0 THEN 
2100               Tp=Tp+1.E-7 
2105           END IF 
2110           Am=ABS(Tm) 
2115           IF Am=0 THEN 
2120               Tm=Tm+1.E-7 
2125           END IF 
2130           Ltp=LOG(Tp) 
2135           Ltm=LOG(Tm) 
2140           Z=Cu+Scd*(.5*(Ltm-Ltp)+Cu*Cz) 
2145           X=REAL(Z) 
2150           Y=IMAG(Z) 
2155  Mcpie: SUBEND 
 
16.2.14 Elliptic Integral of the Third Kind Πj (z,k,a) 
 
2485       SUB Cpij(U,V,L8,Ra,Ia,X,Y)     ! CALL Ske+Cscdz+Theta4 
2490        ! 
2495        ! - PI mit komplexem Argument --- a komplex --- Jakobische Form --- 
2500        ! EINGABE : u+jv und k = L8   und  Re a + j Im a ****************** 
2505        !   AUSGABE : x+jy          ***        Pi_j (u,a)     ************* 
2510           COMPLEX Ltm,Ltp,Tm,Tp,Cn,Cz,Cu,Z,Tpm 
2515           K=L8 
2520           IF K=1 THEN K=1-1.E-8 
2525           IF K>1 OR K<0 THEN L1 
2530           Kc=SQR(1-K*K) 
2535          ! 
2540           CALL Ske(K,K8,E8) 
2545           CALL Ske(Kc,K9,E9) 
2550           Pk=PI/(K8+K8) 
2555          ! 
2560           CALL Cscdz(Ra,Ia,L8,Rs,Is,Rc,Ic,Rd,Id,Rz,Iz) 
2565           Cz=CMPLX(Rz,Iz) 
2570           Cu=CMPLX(U,V) 
2575           Tau=K9/K8 
2580          ! 
2585           CALL Theta4(Tau,(U+Ra)*Pk,(V+Ia)*Pk,Rtp,Itp) 
2590           CALL Theta4(Tau,(U-Ra)*Pk,(V-Ia)*Pk,Rtm,Itm) 
2595           Tp=CMPLX(Rtp,Itp) 
2600           Tm=CMPLX(Rtm,Itm) 
2605           Ap=ABS(Tp) 
2610           IF Ap=0 THEN 
2615               Tp=Tp+1.E-7 
2620           END IF 
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2625           Tpm=Tm/Tp 
2630           Am=ABS(Tpm) 
2635           IF Am=0 THEN 
2640               Tpm=Tpm+1.E-7 
2645           END IF 
2650           Z=.5*LOG(Tpm)+Cu*Cz 
2655           X=REAL(Z) 
2660           Y=IMAG(Z) 
2665  L1: SUBEND 
 
16.3 Theta Functions 
 
16.3.1 Theta Function ϑ1 (z,k) 
 
645       SUB Theta1(Tau,X,Y,Re,Im) 
650        ! 
655        ! **** Abramowitz Nr. 16.27.1   **** 
660           COMPLEX Delta,Sum_neu,Sum_alt,Z 
665           INTEGER N,M 
670           N=-1 
675           M=0 
680           Q=EXP(-PI*Tau) 
685           IF ABS(Q)>=1 THEN L1 
690           Sum_neu=CMPLX(0,0) 
695           Z=CMPLX(X,Y) 
700           WHILE M<4 
705               N=N+1 
710               Sum_alt=Sum_neu 
715               Delta=(-1)^N*Q^(N*(N+1))*SIN((N+N+1)*Z) 
720               Sum_neu=Sum_alt+Delta 
725               Bd=ABS(Delta) 
730               IF Bd<1.E-8 THEN 
735                   M=M+1 
740               ELSE 
745                   M=0 
750               END IF 
755           END WHILE 
760           Sum_neu=2*SQR(SQR(Q))*Sum_neu 
765           Re=REAL(Sum_neu) 
770           Im=IMAG(Sum_neu) 
775  L1: SUBEND 
 
16.3.2 Theta Function ϑ2 (z,k) 
 
785       SUB Theta2(Tau,X,Y,Re,Im) 
790        ! 
795        ! **** Abramowitz Nr. 16.27.2   **** 
800           COMPLEX Delta,Sum_neu,Sum_alt,Z 
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805           INTEGER N,M 
810           N=-1 
815           M=0 
820           Q=EXP(-PI*Tau) 
825           IF ABS(Q)>=1 THEN L1 
830           Sum_neu=CMPLX(0,0) 
835           Z=CMPLX(X,Y) 
840           WHILE M<4 
845               N=N+1 
850               Sum_alt=Sum_neu 
855               Delta=Q^(N*(N+1))*COS((N+N+1)*Z) 
860               Sum_neu=Sum_alt+Delta 
865               Bd=ABS(Delta) 
870               IF Bd<1.E-8 THEN 
875                   M=M+1 
880               ELSE 
885                   M=0 
890               END IF 
895           END WHILE 
900           Sum_neu=2*SQR(SQR(Q))*Sum_neu 
905           Re=REAL(Sum_neu) 
910           Im=IMAG(Sum_neu) 
915  L1: SUBEND 
 
16.3.3 Theta Function ϑ3 (z,k) 
 
925       SUB Theta3(Tau,X,Y,Re,Im) 
930        ! 
935        ! **** Abramowitz Nr. 16.27.3   **** 
940           COMPLEX Delta,Sum_neu,Sum_alt,Z 
945           INTEGER N,M 
950           N=0 
955           M=0 
960           Q=EXP(-PI*Tau) 
965           IF ABS(Q)>=1 THEN L1 
970           Sum_neu=CMPLX(0,0) 
975           Z=CMPLX(X,Y) 
980           WHILE M<4 
985               N=N+1 
990               Sum_alt=Sum_neu 
995               Delta=Q^(N*N)*COS(2*N*Z) 
1000               Sum_neu=Sum_alt+Delta 
1005               Bd=ABS(Delta) 
1010               IF Bd<1.E-8 THEN 
1015                   M=M+1 
1020               ELSE 
1025                   M=0 
1030               END IF 
1035           END WHILE 
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1040           Sum_neu=1+Sum_neu+Sum_neu 
1045           Re=REAL(Sum_neu) 
1050           Im=IMAG(Sum_neu) 
1055  L1: SUBEND 
 
16.3.4 Theta Function ϑ4 (z,k) 
 
1065       SUB Theta4(Tau,X,Y,Re,Im) 
1070        ! 
1075        ! **** Abramowitz Nr. 16.27.4   **** 
1080           COMPLEX Delta,Sum_neu,Sum_alt,Z 
1085           INTEGER N,M 
1090           N=0 
1095           M=0 
1100           Q=EXP(-PI*Tau) 
1105           IF ABS(Q)>=1 THEN L1 
1110           Sum_neu=CMPLX(0,0) 
1115           Z=CMPLX(X,Y) 
1120           WHILE M<4 
1125               N=N+1 
1130               Sum_alt=Sum_neu 
1135               Delta=(-1)^N*Q^(N*N)*COS(2*N*Z) 
1140               Sum_neu=Sum_alt+Delta 
1145               Bd=ABS(Delta) 
1150               IF Bd<1.E-8 THEN 
1155                   M=M+1 
1160               ELSE 
1165                   M=0 
1170               END IF 
1175           END WHILE 
1180           Sum_neu=1+Sum_neu+Sum_neu 
1185           Re=REAL(Sum_neu) 
1190           Im=IMAG(Sum_neu) 
1195  L1: SUBEND 
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